24 research outputs found

    Stepwise Observation and Quantification and Mixed Matrix Membrane Separation of CO2 within a Hydroxy-Decorated Porous Host

    Get PDF
    The identification of preferred binding domains within a host structure provides important insights into the function of materials. State-of-the-art reports mostly focus on crystallographic studies of empty and single component guest-loaded host structures to determine the location of guests. However, measurements of material properties (e.g., adsorption and breakthrough of substrates) are usually performed for a wide range of pressure (guest coverage) and/or using multi-component gas mixtures. Here we report the development of a multifunctional gas dosing system for use in X-ray powder diffraction studies on Beamline I11 at Diamond Light Source. This facility is fully automated and enables in situ crystallographic studies of host structures under (i) unlimited target gas loadings and (ii) loading of multi-component gas mixtures. A proof-of-concept study was conducted on a hydroxyl-decorated porous material MFM-300(V-III) under (i) five different CO2 pressures covering the isotherm range and (ii) the loading of equimolar mixtures of CO2/N-2. The study has successfully captured the structural dynamics underpinning CO2 uptake as a function of surface coverage. Moreover, MFM-300(V-III) was incorporated in a mixed matrix membrane (MMM) with PIM-1 in order to evaluate the CO2/N-2 separation potential of this material. Gas permeation measurements on the MMM show a great improvement over the bare PIM-1 polymer for CO2/N-2 separation based on the ideal selectivity

    Amides do not always work: observation of guest binding in an amide-functionalised porous host

    Get PDF
    An amide-functionalised metal organic frame-work (MOF) material, MFM-136, shows a high CO2 uptake of 12.6 mmol g-1 at 20 bar and 298 K. MFM-136 is the first example of acylamide pyrimidyl isophthalate MOF without open metal sites, and thus provides a unique platform to study guest bind-ing, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO2/CH4 molecules and the pendant amide group in the pore. This observation has been confirmed un-ambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not neces-sarily induce specific guest-host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties

    Modeling of burden distribution in the blast furnace

    Get PDF
    The blast furnace is the main ironmaking production unit in the world which converts iron ore with coke and hot blast into liquid iron, hot metal, which is used for steelmaking. The furnace acts as a counter-current reactor charged with layers of raw material of very different gas permeability. The arrangement of these layers, or burden distribution, is the most important factor influencing the gas flow conditions inside the furnace, which dictate the efficiency of the heat transfer and reduction processes. For proper control the furnace operators should know the overall conditions in the furnace and be able to predict how control actions affect the state of the furnace. However, due to high temperatures and pressure, hostile atmosphere and mechanical wear it is very difficult to measure internal variables. Instead, the operators have to rely extensively on measurements obtained at the boundaries of the furnace and make their decisions on the basis of heuristic rules and results from mathematical models. It is particularly difficult to understand the distribution of the burden materials because of the complex behavior of the particulate materials during charging. The aim of this doctoral thesis is to clarify some aspects of burden distribution and to develop tools that can aid the decision-making process in the control of the burden and gas distribution in the blast furnace. A relatively simple mathematical model was created for simulation of the distribution of the burden material with a bell-less top charging system. The model developed is fast and it can therefore be used by the operators to gain understanding of the formation of layers for different charging programs. The results were verified by findings from charging experiments using a small-scale charging rig at the laboratory. A basic gas flow model was developed which utilized the results of the burden distribution model to estimate the gas permeability of the upper part of the blast furnace. This combined formulation for gas and burden distribution made it possible to implement a search for the best combination of charging parameters to achieve a target gas temperature distribution. As this mathematical task is discontinuous and non-differentiable, a genetic algorithm was applied to solve the optimization problem. It was demonstrated that the method was able to evolve optimal charging programs that fulfilled the target conditions. Even though the burden distribution model provides information about the layer structure, it neglects some effects which influence the results, such as mixed layer formation and coke collapse. A more accurate numerical method for studying particle mechanics, the Discrete Element Method (DEM), was used to study some aspects of the charging process more closely. Model charging programs were simulated using DEM and compared with the results from small-scale experiments. The mixed layer was defined and the voidage of mixed layers was estimated. The mixed layer was found to have about 12% less voidage than layers of the individual burden components. Finally, a model for predicting the extent of coke collapse when heavier pellets are charged over a layer of lighter coke particles was formulated based on slope stability theory, and was used to update the coke layer distribution after charging in the mathematical model. In designing this revision, results from DEM simulations and charging experiments for some charging programs were used. The findings from the coke collapse analysis can be used to design charging programs with more stable coke layers

    Spin-forbidden transitions in the molecular nanomagnet V-15

    No full text
    Gysler M, Schlegel C, Mitra T, Müller A, Krebs B, van Slageren J. Spin-forbidden transitions in the molecular nanomagnet V-15. Physical Review B. 2014;90(14): 144405.We performed electron spin-resonance measurements on single crystals of the molecular nanomagnet V-15 using a novel broadband spectrometer, both in parallel and in perpendicular modes, we see (B-1 parallel to B-0, B-1 perpendicular to B-0). Measurements were carried out in proximity of the spin level crossing at B-0 = 2.75 T. We observed spin-forbidden transitions from the S = 1/2 zero-field ground state to the S = 3/2 excited state in parallel mode spectra. Spin-forbidden transitions are employed for switching of coherent interactions between qubits in recent quantum simulator proposals. Our theoretical investigations showed that the mixing of spin states can result from either an antisymmetric exchange interaction or a combination of static distortion and hyperfine interaction

    PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanoparticle fillers

    Get PDF
    High-free-volume glassy polymers, such as polymers of intrinsic microporosity (PIMs) and poly(trimethylsilylpropyne), have attracted attention as membrane materials due to their high permeability. However, loss of free volume over time, or aging, limits their applicability. Introduction of a secondary filler phase can reduce this aging but either cost or instability rules out scale up for many fillers. Here, we report a cheap, acid-tolerant, nanoparticulate hypercrosslinked polymer ‘sponge’ as an alternative filler. On adding the filler, permeability is enhanced and aging is strongly retarded. This is accompanied by a CO2/N2 selectivity that increases over time, surpassing the Robeson upper bound

    Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO2 separation

    Get PDF
    High permeance membranes were produced by addition of highly permeable nanoparticulate fillers (hypercrosslinked polystyrene, HCP, and its carbonized form, C-HCP) to a high free volume polymer (polymer of intrinsic microporosity PIM-1) in a thin film (typically 2 μm) on a porous polyacrylonitrile support. Self-standing mixed matrix membranes (MMMs) of thicknesses in the range 40−90 μm were also prepared with the same polymer and fillers. While robust MMMs could only be formed for moderate filler loadings, thin film nanocomposite (TFN) membranes could be produced from dispersions with filler loadings up to 60 wt%. On increasing the filler loading, CO2 permeance increased in line with the predictions of the Maxwell model for a highly permeable filler. Physical ageing led to some loss of permeance coupled with an increase in CO2/N2 selectivity. However, for TFN membranes the greatest effects of ageing were seen within 90 days. After ageing, TFN membranes showed high permeance with reasonable selectivity; for example, with 60 wt% C-HCP, CO2 permeance > 9,300 GPU, CO2/N2 selectivity ~ 11

    Molecular shape sorting using molecular organic cages

    No full text
    The energy-efficient separation of chemical feedstocks is a major sustainability challenge. Porous extended frameworks such as zeolites or metal–organic frameworks are one potential solution to this problem. Here, we show that organic molecules, rather than frameworks, can separate other organic molecules by size and shape. A molecular organic cage is shown to separate a common aromatic feedstock (mesitylene) from its structural isomer (4-ethyltoluene) with an unprecedented perfect specificity for the latter. This specificity stems from the structure of the intrinsically porous cage molecule, which is itself synthesized from a derivative of mesitylene. In other words, crystalline organic molecules are used to separate other organic molecules. The specificity is defined by the cage structure alone, so this solid-state ‘shape sorting’ is, uniquely, mirrored for cage molecules in solution. The behaviour can be understood from a combination of atomistic simulations for individual cage molecules and solid-state molecular dynamics simulations
    corecore