31 research outputs found

    Theory and New Amplification Regime in Periodic Multi Modal Slow Wave Structures with Degeneracy Interacting with an Electron Beam

    Full text link
    We present the theory of a new amplification regime in Travelling Wave Tubes (TWTs) composed of a slow-wave periodic structure that supports multiple electromagnetic modes that can all be synchronized with the electron beam. The interaction between the multimodal slow-wave structure and the electron beam is quantified using a Multi Transmission Line approach (MTL) based on a generalized Pierce model and transfer matrix analysis leading to the identification of modes with complex Bloch wavenumber. In particular, we address a new possible operation condition for TWTs based on the super synchronism between an electron beam and four modes exhibiting a degeneracy condition near a band edge of the periodic slowwave MTL. We show a phenomenological change in the band structure of periodic MTL where we observe at least two growing modal cooperating solutions as opposed to a uniform MTL interacting with an electron beam where there is rigorously only one growing modal solution. We discuss the advantage of using such a degeneracy condition in TWTs that leads to larger gain conditions in amplifier regimes and also to very lowstarting beam current in high power oscillators.Comment: Version 2. 33 pages, 16 figure

    Novel concept for pulse compression via structured spatial energy distribution

    Full text link
    We present a novel concept for pulse compression scheme applicable at RF, microwave and possibly to optical frequencies based on structured energy distribution in cavities supporting degenerate band-edge (DBE) modes. For such modes a significant fraction of energy resides in a small fraction of the cavity length. Such energy concentration provides a basis for superior performance for applications in microwave pulse compression devices (MPC) when compared to conventional cavities. The novel design features: larger loaded quality factor of the cavity and stored energy compared to conventional designs, robustness to variations of cavity loading, energy feeding and extraction at the cavity center, substantial reduction of the cavity size by use of equivalent lumped circuits for low energy sections of the cavity, controlled pulse shaping via engineered extraction techniques. The presented concepts are general, in terms of equivalent transmission lines, and can be applied to a variety of realistic guiding structures.Comment: 18 pages, 10 figure

    Extension of Pierce model to multiple transmission lines interacting with an electron beam

    Full text link
    A possible route towards achieving high power microwave (HPM) devices is through the use of novel slow-wave structures, represented by multiple coupled transmission lines (MTLs), and whose behavior when coupled to electron beams has not been sufficiently explored. We present the extension of the one-dimensional linearized Pierce theory to MTLs coupled to a single electron beam. We develop multiple formalisms to calculate the k-{\omega} dispersion relation of the system and find that the existence of a growing wave solution is always guaranteed if the electron propagation constant is larger than or equal to the largest propagation constant of the MTL system. We verify our findings with illustrative examples which bring to light unique properties of the system in which growing waves were found to exist within finite bands of the electron propagation constant and also present possible means to improve the gain. By treating the beam-MTL interaction as distributed dependent current generators in the MTL, we derive relations characterizing the power flux and energy exchange between the beam and the MTLs. For the growing wave, we show that the beam always behaves as an energy source causing power flux along the transmission lines. The theory developed in this paper is the basis for the possible use of degenerate band-edges in periodic MTL systems for HPM amplifiers.Comment: 18 Pages and 6 Figure

    Photo-induced Magnetic Force Between Nanostructures

    Full text link
    Photo-induced magnetic force between nanostructures, at optical frequencies, is investigated theoretically. Till now optical magnetic effects are not used in scanning probe microscopy because of the vanishing natural magnetism with increasing frequency. On the other hand, artificial magnetism in engineered nanostructures led to the development of measurable optical magnetism. Here, two examples of nanoprobes that are able to generate strong magnetic dipolar fields at optical frequency are investigated: first an ideal magnetically polarizable nanosphere and then a circular cluster of silver nanospheres that has a loop-like collective plasmonic resonance equivalent to a magnetic dipole. Magnetic forces are evaluated based on nanostructure polarizabilities, i.e. induced magnetic dipoles, and magnetic-near field evaluations. As an initial assessment on the possibility of a magnetic nanoprobe to detect magnetic forces, we consider two identical magnetically polarizable nanoprobes and observe magnetic forces in the order of piconewtons thereby bringing it within detection limits of conventional atomic force microscopes at ambient pressure and temperature. The detection of magnetic force is a promising method in studying optical magnetic transitions that can be the basis of innovative spectroscopy applications.Comment: 9 pages, 10 figure

    Extension of the Pierce Model to Multiple Transmission Lines Interacting With an Electron Beam

    Full text link

    Neurophysiological aspects in SARS-CoV-2–induced acute respiratory distress syndrome

    Get PDF
    Patients with coronavirus disease 2019 (COVID-19) often develop acute respiratory failure and acute respiratory distress syndrome (ARDS) that requires intensive care unit (ICU) hospitalization and invasive mechanical ventilation, associated with a high mortality rate. In addition, many patients fail early weaning attempts, further increasing ICU length of stay and mortality. COVID-19 related ARDS can be complicated by neurological involvement with mechanisms of direct central nervous system (CNS) infection and with overlapping para-infective mechanisms of the peripheral nervous system (PNS). We aimed to evaluate the possible involvement of the brainstem and PNS in patients with COVID-19 related ARDS and difficulty in weaning from mechanical ventilation. We evaluated electroencephalogram (EEG), brainstem auditory evoked potentials (BAEPs), electroneurography of the four limbs and the phrenic nerve in 10 patients with respiratory insufficiency due to SARS-CoV-2. All were admitted to intensive care unit and were facing prolonged weaning from mechanical ventilation. All ten patients showed a mild diffuse non-specific slowing of brain electrical activity on the EEG. Four patients had an acute motor axonal neuropathy with absent or reduced amplitude phrenic nerve CMAP while four patients showed impairment of the BAEPs. A patient with peripheral nerve impairment suggestive of Guillain-Barré syndrome (GBS) underwent an intravenous immunoglobulin (IVIg) cycle that led to an improvement in the weaning process and progressive motor improvement. The inclusion of a comprehensive neurological evaluation in COVID-19 patients in ICU facilitated the early identification and effective management of Nervous System involvement

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons

    Concept for Pulse Compression Device Using Structured Spatial Energy Distribution

    No full text
    corecore