92 research outputs found

    Comparison of the C-mediating killing activity and C-activating properties of mouse monoclonal and polyclonal antibodies against Trypanosoma cruzi

    Get PDF
    A Mouse polyclonal antiserum against Trypanosoma cruzi or its IgG and IgM fractions and five monoclonal antibodies (two IgM, two IgG1 and one IgG2a) recognize and combine with membrane components of trypomastigote forms of the parasite as revealed by immunofluorescence. Although all these antibodies sensitize trypomastigotes and prepare them to activate the complement (C) system, as measured by consumption of total C, C4, B and C3, only the polyclonal antiserum or its IgG, IgM and Fabμ fragments were able to induce trypanosome lysis by the alternative C pathway

    Diversity of Micrurus Snake Species Related to Their Venom Toxic Effects and the Prospective of Antivenom Neutralization

    Get PDF
    The Elapidae family is represented in America by three genera of coral snakes: Micruroides, Leptomicrurus and Micrurus, the latter being the most abundant and diversified group. Micrurus bites can cause death by muscle paralysis and respiratory arrest few hours after envenomation. The specific treatment for Micrurus envenomation is the application of heterologous antivenom. The aim of this study was to compare the toxicity of venoms from nine species of coral snakes and analyze the neutralization potential of the Brazilian coral snake antivenom. In vitro assays showed that the majority of the Micrurus venoms are endowed with phospholipase and hyaluronidase and low proteolytic activities. These enzymes are not equally neutralized in all venoms by the therapeutic antivenom. Moreover, in vivo assays showed that some of the Micrurus venoms are extremely lethal, such as the ones from M. altirostris, M. corallinus, M. frontalis, M. lemniscatus and M. spixii. Neutralization tests, performed in vivo, showed that the therapeutic antivenom was able to neutralize better the venoms from M. frontalis, M. corallinus, and M. spixii but not from M. altirostris and M. lemniscatus. Taken together, these results suggest that modifications in the immunization antigenic mixture should occur in order to generate more comprehensive therapeutic antivenom

    Dilute-phase pneumatic conveying of polystyrene particles: pressure drop curve and particle distribution over the pipe cross-section

    Get PDF
    During the pneumatic conveying of plastic pellets, it has been observed that materials with similar physical characteristics may develop a substantial difference in pressure drop. In this work, the pressure drop in a particle-laden 2.7 meter long horizontal channel with circular cross-section is presented from an experimental perspective. Experiments are carried out for cylindrical polystyrene beads with an average diameter of 3.2 mm and mass loadings of 0.06 to 0.11 (kg particles/kg gas). The air mass flow rate was studied in the range from 0.085 kg/s to 0.170 kg/s. The pressure drop curve is shown as a function of air velocity and particle load. Response surface methodology showed high statistical significance for air velocity, particle load and their cross-relation.8188Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Bothrops asper snake venom and its metalloproteinase BaP-1 activate the complement system. Role in leucocyte recruitment.

    Get PDF
    The venom of the snake Bothrops asper, the most important poisonous snake in Central America, evokes an inflammatory response, the mechanisms of which are not well characterized. The objectives of this study were to investigate whether B. asper venom and its purified toxins--phospholipases and metalloproteinase--activate the complement system and the contribution of the effect on leucocyte recruitment. In vitro chemotaxis assays were performed using Boyden's chamber model to investigate the ability of serum incubated with venom and its purified toxins to induce neutrophil migration. The complement consumption by the venom was evaluated using an in vitro haemolytic assay. The importance of complement activation by the venom on neutrophil migration was investigated in vivo by injecting the venom into the peritoneal cavity of C5-deficient mice. Data obtained demonstrated that serum incubated with crude venom and its purified metalloproteinase BaP-1 are able to induce rat neutrophil chemotaxis, probably mediated by agent(s) derived from the complement system. This hypothesis was corroborated by the capacity of the venom to activate this system in vitro. The involvement of C5a in neutrophil chemotaxis induced by venom-activated serum was demonstrated by abolishing migration when neutrophils were pre-incubated with antirat C5a receptor antibody. The relevance of the complement system in in vivo leucocyte mobilization was further demonstrated by the drastic decrease of this response in C5-deficient mice. Pre-incubation of serum with the soluble human recombinant complement receptor type 1 (sCR 1) did not prevent the response induced by the venom, but abolished the migration evoked by metalloproteinase-activated serum. These data show the role of the complement system in bothropic envenomation and the participation of metalloproteinase in the effect. Also, they suggest that the venom may contain other component(s) which can cause direct activation of C5a

    Transcriptome analysis of Loxosceles laeta (Araneae, Sicariidae) spider venomous gland using expressed sequence tags

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The bite of spiders belonging to the genus <it>Loxosceles </it>can induce a variety of clinical symptoms, including dermonecrosis, thrombosis, vascular leakage, haemolysis, and persistent inflammation. In order to examine the transcripts expressed in venom gland of <it>Loxosceles laeta </it>spider and to unveil the potential of its products on cellular structure and functional aspects, we generated 3,008 expressed sequence tags (ESTs) from a cDNA library.</p> <p>Results</p> <p>All ESTs were clustered into 1,357 clusters, of which 16.4% of the total ESTs belong to recognized toxin-coding sequences, being the Sphingomyelinases D the most abundant transcript; 14.5% include "possible toxins", whose transcripts correspond to metalloproteinases, serinoproteinases, hyaluronidases, lipases, C-lectins, cystein peptidases and inhibitors. Thirty three percent of the ESTs are similar to cellular transcripts, being the major part represented by molecules involved in gene and protein expression, reflecting the specialization of this tissue for protein synthesis. In addition, a considerable number of sequences, 25%, has no significant similarity to any known sequence.</p> <p>Conclusion</p> <p>This study provides a first global view of the gene expression scenario of the venom gland of <it>L. laeta </it>described so far, indicating the molecular bases of its venom composition.</p

    Micrurus snake venoms activate human complement system and generate anaphylatoxins

    Get PDF
    Background The genus Micrurus, coral snakes (Serpentes, Elapidae), comprises more than 120 species and subspecies distributed from the south United States to the south of South America. Micrurus snake bites can cause death by muscle paralysis and further respiratory arrest within a few hours after envenomation. Clinical observations show mainly neurotoxic symptoms, although other biological activities have also been experimentally observed, including cardiotoxicity, hemolysis, edema and myotoxicity. Results In the present study we have investigated the action of venoms from seven species of snakes from the genus Micrurus on the complement system in in vitro studies. Several of the Micrurus species could consume the classical and/or the lectin pathways, but not the alternative pathway, and C3a, C4a and C5a were generated in sera treated with the venoms as result of this complement activation. Micrurus venoms were also able to directly cleave the α chain of the component C3, but not of the C4, which was inhibited by 1,10 Phenanthroline, suggesting the presence of a C3α chain specific metalloprotease in Micrurus spp venoms. Furthermore, complement activation was in part associated with the cleavage of C1-Inhibitor by protease(s) present in the venoms, which disrupts complement activation control. Conclusion Micrurus venoms can activate the complement system, generating a significant amount of anaphylatoxins, which may assist due to their vasodilatory effects, to enhance the spreading of other venom components during the envenomation process

    P-I snake venom metalloproteinase is able to activate the complement system by direct cleavage of central components of the cascade

    Get PDF
    Background Snake Venom Metalloproteinases (SVMPs) are amongst the key enzymes that contribute to the high toxicity of snake venom. We have recently shown that snake venoms from the Bothrops genus activate the Complement system (C) by promoting direct cleavage of C-components and generating anaphylatoxins, thereby contributing to the pathology and spread of the venom. The aim of the present study was to isolate and characterize the C-activating protease from Bothrops pirajai venom. Results Using two gel-filtration chromatography steps, a metalloproteinase of 23 kDa that activates Complement was isolated from Bothrops pirajai venom. The mass spectrometric identification of this protein, named here as C-SVMP, revealed peptides that matched sequences from the P-I class of SVMPs. C-SVMP activated the alternative, classical and lectin C-pathways by cleaving the α-chain of C3, C4 and C5, thereby generating anaphylatoxins C3a, C4a and C5a. In vivo, C-SVMP induced consumption of murine complement components, most likely by activation of the pathways and/or by direct cleavage of C3, leading to a reduction of serum lytic activity. Conclusion We show here that a P-I metalloproteinase from Bothrops pirajai snake venom activated the Complement system by direct cleavage of the central C-components, i.e., C3, C4 and C5, thereby generating biologically active fragments, such as anaphylatoxins, and by cleaving the C1-Inhibitor, which may affect Complement activation control. These results suggest that direct complement activation by SVMPs may play a role in the progression of symptoms that follow envenomation. Author Summary The genus Bothrops inflicts the vast majority of snakebites in Central and South America and is responsible for 90% of snake envenomations in Brazil. Envenomations are characterized by prominent local effects, including edema and necrosis, and by systemic manifestations such as hemorrhage, coagulopathy and acute renal failure. Several components have been isolated from Bothrops venoms, and the snake venom metalloproteinases (SVMPs) are key enzymes contributing to the high toxicity of the venoms. Previously, we analyzed the pro-inflammatory properties of snake venoms from the genus Bothrops and demonstrated that several of them were potent activators of the Complement (C) system. C3a, C4a and C5a were generated in venom-treated sera not only through C-activation but also by direct cleavage of C-components. In the present study, we have isolated and characterized a metalloproteinase from Bothrops pirajai snake venom, named here as C-SVMP, which interferes with all three complement pathways, generating potent pro-inflammatory fragments, such as C3a, C4a and C5a. Our data suggest that C-activation by Bothrops pirajai venom is due to activity of an SVMP, which may play a role in the progression of symptoms that follow envenomation

    Reproductive aspects of the oceanic whitetip shark, Carcharhinus longimanus (Elasmobranchii: Carcharhinidae), in the equatorial and southwestern Atlantic Ocean

    Get PDF
    The present study sought to study the reproductive biology of the oceanic whitetip shark, Carcharhinus longimanus, in the equatorial and southwestern Atlantic Ocean. A total of 234 specimens were collected as bycatch during pelagic longline fisheries targeting tunas and swordfish, between December 2003 and December 2010. The fishing area was located between latitudes 10N and 35S and longitudes 3E and 40W. Of the 234 individuals sampled, 118 were females (with sizes ranging from 81 to 227 cm TL, total length) and 116 males (ranging from 80 to 242 cm TL). The reproductive stages of the females were classed as immature, mature, preovulatory and pregnant, while males were divided into immature, maturing and mature. The size at maturity for females was estimated at 170.0 cm TL, while that for males was between 170.0 and 190.0 cm TL. Ovarian fecundity ranged from 1 to 10 follicles and uterine fecundity from 1 to 10 embryos. The reproductive cycle of this species is most likely biennial, with parturition occurring once every two years.info:eu-repo/semantics/publishedVersio

    Sphingomyelinase D Activity in Model Membranes: Structural Effects of in situ Generation of Ceramide-1-Phosphate

    Get PDF
    The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy and dynamic light scattering) and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing sphingomyelin were examined. The findings indicate that: 1) ceramide-1-phosphate (particularly lauroyl ceramide-1-phosphate) can be incorporated into sphingomyelin bilayers in a concentration-dependent manner and generates coexistence of liquid disordered/solid ordered domains, 2) the activity of sphingomyelinase D is clearly influenced by the supramolecular organization of its substrate in membranes and, 3) in situ ceramide-1-phosphate generation by enzymatic activity profoundly alters the lateral structure and morphology of the target membranes
    • …
    corecore