69 research outputs found

    Meningococcal carriage within households in the African meningitis belt: A longitudinal pilot study.

    Get PDF
    OBJECTIVES: Carriers of Neisseria meningitidis are a key source of transmission. In the African meningitis belt, where risk of meningococcal disease is highest, a greater understanding of meningococcal carriage dynamics is needed. METHODS: We randomly selected an age-stratified sample of 400 residents from 116 households in Bamako, Mali, and collected pharyngeal swabs in May 2010. A month later, we enrolled all 202 residents of 20 of these households (6 with known carriers) and collected swabs monthly for 6 months prior to MenAfriVac vaccine introduction and returned 10 months later to collect swabs monthly for 3 months. We used standard bacteriological methods to identify N. meningitidis carriers and fit hidden Markov models to assess acquisition and clearance overall and by sex and age. RESULTS: During the cross-sectional study 5.0% of individuals (20/400) were carriers. During the longitudinal study, 73 carriage events were identified from 1422 swabs analyzed, and 16.3% of individuals (33/202) were identified as carriers at least once. The majority of isolates were non-groupable; no serogroup A carriers were identified. CONCLUSIONS: Our results suggest that the duration of carriage with any N. meningitidis averages 2.9 months and that males and children acquire and lose carriage more frequently in an urban setting in Mali. Our study informed the design of a larger study implemented in seven countries of the African meningitis belt

    Bacterial Factors Associated with Lethal Outcome of Enteropathogenic Escherichia coli Infection: Genomic Case-Control Studies.

    Get PDF
    BACKGROUND: Typical enteropathogenic Escherichia coli (tEPEC) strains were associated with mortality in the Global Enteric Multicenter Study (GEMS). Genetic differences in tEPEC strains could underlie some of the variability in clinical outcome. METHODS: We produced draft genome sequences of all available tEPEC strains from GEMS lethal infections (LIs) and of closely matched EPEC strains from GEMS subjects with non-lethal symptomatic infections (NSIs) and asymptomatic infections (AIs) to identify gene clusters (potential protein encoding sequences sharing ≥90% nucleotide sequence identity) associated with lethality. RESULTS: Among 14,412 gene clusters identified, the presence or absence of 392 was associated with clinical outcome. As expected, more gene clusters were associated with LI versus AI than LI versus NSI. The gene clusters more prevalent in strains from LI than those from NSI and AI included those encoding proteins involved in O-antigen biogenesis, while clusters encoding type 3 secretion effectors EspJ and OspB were among those more prevalent in strains from non-lethal infections. One gene cluster encoding a variant of an NleG ubiquitin ligase was associated with LI versus AI, while two other nleG clusters had the opposite association. Similar associations were found for two nleG gene clusters in an additional, larger sample of NSI and AI GEMS strains. CONCLUSIONS: Particular genes are associated with lethal tEPEC infections. Further study of these factors holds potential to unravel the mechanisms underlying severe disease and to prevent adverse outcomes

    Microbiota that affect risk for shigellosis in children in low-income countries

    Get PDF
    Pathogens in the gastrointestinal tract exist within a vast population of microbes. We examined associations between pathogens and composition of gut microbiota as they relate to Shigella spp./enteroinvasive Escherichia coli infection. We analyzed 3,035 stool specimens (1,735 nondiarrheal and 1,300 moderate-to-severe diarrheal) from the Global Enteric Multicenter Study for 9 enteropathogens. Diarrheal specimens had a higher number of enteropathogens (diarrheal mean 1.4, nondiarrheal mean 0.95; p<0.0001). Rotavirus showed a negative association with Shigella spp. in cases of diarrhea (odds ratio 0.31, 95% CI 0.17–0.55) and had a large combined effect on moderate-to-severe diarrhea (odds ratio 29, 95% CI 3.8–220). In 4 Lactobacillus taxa identified by 16S rRNA gene sequencing, the association between pathogen and disease was decreased, which is consistent with the possibility that Lactobacillus spp. are protective against Shigella spp.–induced diarrhea. Bacterial diversity of gut microbiota was associated with diarrhea status, not high levels of the Shigella spp. ipaH gene.publishedVersio

    Impact of the addition of azithromycin to antimalarials used for seasonal malaria chemoprevention on antimicrobial resistance of Streptococcus pneumoniae.

    Get PDF
    OBJECTIVE: A trial was conducted in Burkina Faso and Mali to investigate whether addition of azithromycin to the antimalarials used for seasonal malaria chemoprevention reduces mortality and hospital admissions of children. We tested the sensitivity of nasal isolates of Streptococcus pneumoniae obtained during this trial to azithromycin and other antibiotics. METHODS: Azithromycin or placebo was administered monthly, in combination with the antimalarials used for seasonal malaria chemoprevention, for four months, over the annual malaria transmission seasons of 2014, 2015, and 2016. Nasopharyngeal swabs were collected from 2773 Burkinabe and 2709 Malian children on seven occasions: in July and December each year prior to and after drug administration, and at a final survey in early 2018. Pneumococci were isolated from nasopharyngeal swabs and tested for sensitivity to azithromycin and other antibiotics. RESULTS: A total of 5482 samples were collected. In Burkina Faso, the percentage of pneumococcal isolates resistant to azithromycin among children who had received it increased from 4.9% (95% CI: 2.4%, 9.9%) before the intervention to 25.6% (95% CI: 17.6%, 35.7%) afterward. In Mali, the increase was from 7.6% (95% CI: 3.8%, 14.4%) to 68.5% (95% CI: 55.1%, 79.4%). The percentage of resistant isolates remained elevated (17.7% (95% CI: 11.1%, 27.1%) in Burkina Faso and 19.1% (95% CI: 13.5%, 26.3%) in Mali) among children who had received azithromycin 1 year after stopping the intervention. An increase in resistance to azithromycin was also observed in children who had received a placebo but it was less marked. CONCLUSION: Addition of azithromycin to the antimalarial combination used for seasonal malaria chemoprevention was associated with an increase in resistance of pneumococci to azithromycin and erythromycin, which persisted 1 year after the last administration of azithromycin

    The Effect of Antibiotic Exposure and Specimen Volume on the Detection of Bacterial Pathogens in Children With Pneumonia.

    Get PDF
    BACKGROUND.: Antibiotic exposure and specimen volume are known to affect pathogen detection by culture. Here we assess their effects on bacterial pathogen detection by both culture and polymerase chain reaction (PCR) in children. METHODS.: PERCH (Pneumonia Etiology Research for Child Health) is a case-control study of pneumonia in children aged 1-59 months investigating pathogens in blood, nasopharyngeal/oropharyngeal (NP/OP) swabs, and induced sputum by culture and PCR. Antibiotic exposure was ascertained by serum bioassay, and for cases, by a record of antibiotic treatment prior to specimen collection. Inoculated blood culture bottles were weighed to estimate volume. RESULTS.: Antibiotic exposure ranged by specimen type from 43.5% to 81.7% in 4223 cases and was detected in 2.3% of 4863 controls. Antibiotics were associated with a 45% reduction in blood culture yield and approximately 20% reduction in yield from induced sputum culture. Reduction in yield of Streptococcus pneumoniae from NP culture was approximately 30% in cases and approximately 32% in controls. Several bacteria had significant but marginal reductions (by 5%-7%) in detection by PCR in NP/OP swabs from both cases and controls, with the exception of S. pneumoniae in exposed controls, which was detected 25% less frequently compared to nonexposed controls. Bacterial detection in induced sputum by PCR decreased 7% for exposed compared to nonexposed cases. For every additional 1 mL of blood culture specimen collected, microbial yield increased 0.51% (95% confidence interval, 0.47%-0.54%), from 2% when volume was ≤1 mL to approximately 6% for ≥3 mL. CONCLUSIONS.: Antibiotic exposure and blood culture volume affect detection of bacterial pathogens in children with pneumonia and should be accounted for in studies of etiology and in clinical management

    Detection of Pneumococcal DNA in Blood by Polymerase Chain Reaction for Diagnosing Pneumococcal Pneumonia in Young Children From Low- and Middle-Income Countries.

    Get PDF
    BACKGROUND.: We investigated the performance of polymerase chain reaction (PCR) on blood in the diagnosis of pneumococcal pneumonia among children from 7 low- and middle-income countries. METHODS.: We tested blood by PCR for the pneumococcal autolysin gene in children aged 1-59 months in the Pneumonia Etiology Research for Child Health (PERCH) study. Children had World Health Organization-defined severe or very severe pneumonia or were age-frequency-matched community controls. Additionally, we tested blood from general pediatric admissions in Kilifi, Kenya, a PERCH site. The proportion PCR-positive was compared among cases with microbiologically confirmed pneumococcal pneumonia (MCPP), cases without a confirmed bacterial infection (nonconfirmed), cases confirmed for nonpneumococcal bacteria, and controls. RESULTS.: In PERCH, 7.3% (n = 291/3995) of cases and 5.5% (n = 273/4987) of controls were blood pneumococcal PCR-positive (P < .001), compared with 64.3% (n = 36/56) of MCPP cases and 6.3% (n = 243/3832) of nonconfirmed cases (P < .001). Blood pneumococcal PCR positivity was higher in children from the 5 African countries (5.5%-11.5% among cases and 5.3%-10.2% among controls) than from the 2 Asian countries (1.3% and 1.0% among cases and 0.8% and 0.8% among controls). Among Kilifi general pediatric admissions, 3.9% (n = 274/6968) were PCR-positive, including 61.7% (n = 37/60) of those with positive blood cultures for pneumococcus. DISCUSSION.: The utility of pneumococcal PCR on blood for diagnosing childhood pneumococcal pneumonia in the 7 low- and middle-income countries studied is limited by poor specificity and by poor sensitivity among MCPP cases

    Diagnostic microbiologic methods in the GEMS-1 case/control study.

    Get PDF
    To understand the etiology of moderate-to-severe diarrhea among children in high mortality areas of sub-Saharan Africa and South Asia, we performed a comprehensive case/control study of children aged <5 years at 7 sites. Each site employed an identical case/control study design and each utilized a uniform comprehensive set of microbiological assays to identify the likely bacterial, viral and protozoal etiologies. The selected assays effected a balanced consideration of cost, robustness and performance, and all assays were performed at the study sites. Identification of bacterial pathogens employed streamlined conventional bacteriologic biochemical and serological algorithms. Diarrheagenic Escherichia coli were identified by application of a multiplex polymerase chain reaction assay for enterotoxigenic, enteroaggregative, and enteropathogenic E. coli. Rotavirus, adenovirus, Entamoeba histolytica, Giardia enterica, and Cryptosporidium species were detected by commercially available enzyme immunoassays on stool samples. Samples positive for adenovirus were further evaluated for adenovirus serotypes 40 and 41. We developed a novel multiplex assay to detect norovirus (types 1 and 2), astrovirus, and sapovirus. The portfolio of diagnostic assays used in the GEMS study can be broadly applied in developing countries seeking robust cost-effective methods for enteric pathogen detection
    corecore