42 research outputs found

    Profilaxis antibiótica en cirugía

    Get PDF
    Existe una abundantísima documentación en la literatura acerca de la eficacia de los antibióticos utilizados profilácticamente en cirugía (1-10). Probablemente lo más útil para el trabajo diario de un hospital sea la adopción de pautas concretas que permitan ser evaluadas periódicamente a través de la colaboración, entre otros, de anestesistas, cirujanos y microbiólogos (11,12). En esta línea hemos revisado, de una manera intencionadamente esquemática, diversas facetas relativas a la profilaxis antibiótica en cirugía. Para ello comentaremos algunos aspectos generales de profilaxis de la infección postquirúrgica, unas breves normas para la utilización profiláctica de antibióticos y resumiremos determinadas indicaciones en función del tipo de intervención

    Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia–reperfusion model

    Get PDF
    The use of pro-angiogenic growth factors in ischemia models has been associated with limited success in the clinical setting, in part owing to the short lived effect of the injected cytokine. The use of a microparticle system could allow localized and sustained cytokine release and consequently a prolonged biological effect with induction of tissue revascularization. To assess the potential of VEGF165 administered as continuous release in ischemic disease, we compared the effect of delivery of poly(lactic–co-glycolic acid) (PLGA) microparticles (MP) loaded with VEGF165 with free-VEGF or control empty microparticles in a rat model of ischemia–reperfusion. VEGF165 loaded microparticles could be detected in the myocardium of the infarcted animals for more than a month after transplant and provided sustained delivery of active protein in vitro and in vivo. One month after treatment, an increase in angiogenesis (small caliber caveolin-1 positive vessels) and arteriogenesis (α-SMA-positive vessels) was observed in animals treated with VEGF microparticles (pb0.05), but not in the empty microparticles or free-VEGF groups. Correlating with this data, a positive remodeling of the heart was also detected in the VEGF-microparticle group with a significantly greater LV wall thickness (pb0.01). In conclusion, PLGA microparticle is a feasible and promising cytokine delivery system for treatment of myocardial ischemia. This strategy could be scaled up and explored in pre-clinical and clinical studies

    PEGylated-PLGA microparticles containing VEGF for long term drug delivery

    Get PDF
    The potential of poly(lactic-co-glycolic) acid (PLGA) microparticles as carriers for vascular endothelial growth factor (VEGF) has been demonstrated in a previous study by our group, where we found improved angiogenesis and heart remodeling in a rat myocardial infarction model (Formiga et al., 2010). However, the observed accumulation of macrophages around the injection site suggested that the efficacy of treatment could be reduced due to particle phagocytosis. The aim of the present study was to decrease particle phagocytosis and consequently improve protein delivery using stealth technology. PEGylated microparticles were prepared by the double emulsion solvent evaporation method using TROMS (Total Recirculation One Machine System). Before the uptake studies in monocyte-macrophage cells lines (J774 and Raw 264.7), the characterization of the microparticles developed was carried out in terms of particle size, encapsulation efficiency, protein stability, residual poly(vinyl alcohol) (PVA) and in vitro release. Microparticles of suitable size for intramyocardial injection (5 mu m) were obtained by TROMS by varying the composition of the formulation and TROMS conditions with high encapsulation efficiency (70-90%) and minimal residual PVA content (0.5%). Importantly, the bioactivity of the protein was fully preserved. Moreover, PEGylated microparticles released in phosphate buffer 50% of the entrapped protein within 4 h, reaching a plateau within the first day of the in vitro study. Finally, the use of PLGA microparticles coated with PEG resulted in significantly decreased uptake of the carriers by macrophages, compared with non PEGylated microparticles, as shown by flow cytometry and fluorescence microscopy. On the basis of these results, we concluded that PEGylated microparticles loaded with VEGF could be used for delivering growth factors in the myocardium

    Biodegradation and heart retention of polymeric microparticles in a rat model of myocardial ischemia

    Get PDF
    Poly-lactide-co-glycolide (PLGA) microparticles emerged as one of the most promising strategies to achieve site-specific drug delivery. Although these microparticles have been demonstrated to be effective in several wound healing models, their potential in cardiac regeneration has not yet been fully assessed. The present work sought to explore PLGA microparticles as cardiac drug delivery systems. PLGA microparticles were prepared by Total Recirculation One-Machine System (TROMS) after the formation of a multiple emulsion. Microparticles of different size were prepared and characterized to select the most suitable size for intramyocardial administration. Next, the potential of PLGA microparticles for administration in the heart was assessed in a MI rat model. Particle biodegradation over time and myocardial tissue reaction were studied by routine staining and confocal microscopy. Results showed that microparticles with a diameter of 5 μm were the most compatible with intramyocardial administration in terms of injectability through a 29-gauge needle and tissue response. Particles were present in the heart tissue for up to three months post-implantation and no particle migration towards other solid organs was observed, demonstrating good myocardial retention. CD68 immunolabeling revealed 31%, 47% and below 4% microparticle uptake by macrophages one week, one month and three months after injection, respectively (P<0.001). Taken together, these findings support the feasibility of the developed PLGA microparticles as vehicles for delivering growth factors in the infarcted myocardium

    Spread of a highly mucoid Streptococcus pyogenes emm3/ST15 clone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyaluronic acid capsule plays a key role in <it>Streptococcus pyogenes </it>virulence. Circulation of mucoid or highly encapsulated strains has been related to rheumatic fever epidemics and invasive disease in several countries. In 2009, an outbreak of mucoid <it>S. pyogenes </it>isolates was detected in northern Spain. The aim of the study was to describe clinical and molecular characteristics of mucoid strains causing this outbreak and to compare them with a sample of non-mucoid <it>S. pyogenes </it>isolates obtained during the same period of time.</p> <p>Methods</p> <p>All <it>S. pyogenes </it>isolates with a mucoid colony morphology (n = 132), 10% of non-mucoid (n = 144) and all invasive <it>S. pyogenes </it>isolates (n = 7) obtained in 2009 were included. Characterization was performed by T-agglutination, <it>emm </it>typing, pulsed field gel electrophoresis and multilocus sequence typing.</p> <p>Results</p> <p>One clone characterized as <it>emm</it>3.1/ST15 comprised 98.5% (n = 130) of all mucoid isolates. Subjects of all ages were affected. Main clinical manifestations were pharyngitis and scarlet fever, but this clone also caused invasive disease: two cases of streptococcal toxic shock syndrome, one arthritis, and one celullitis with a fatal outcome. Mucoid isolates were more prone to cause invasive disease than non-mucoid isolates (p = 0.001).</p> <p>Conclusions</p> <p>Although no acute rheumatic fever cases were detected, the most worrisome characteristics of this clone were the success for causing invasive disease and the merge of two virulent features: the serotype, <it>emm</it>3, and capsule hyper-production, expressed as a mucoid morphology.</p

    Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration

    Get PDF
    Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague-Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment was detected. Our data support the therapeutic benefit of NRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies

    Functional benefits of PLGA particulates carrying VEGF and CoQ10 in an animal of myocardial ischemia

    Get PDF
    Myocardial ischemia (MI) remains one of the leading causes of death worldwide. Angiogenic therapy with the vascular endothelial growth factor (VEGF) is a promising strategy to overcome hypoxia and its consequences. However, from the clinical data it is clear that fulfillment of the potential of VEGF warrants a better delivery strategy. On the other hand, the compelling evidences of the role of oxidative stress in diseases like MI encourage the use of antioxidant agents. Coenzyme Q10 (CoQ10) due to its role in the electron transport chain in the mitochondria seems to be a good candidate to manage MI but is associated with poor biopharmaceutical properties seeking better delivery approaches. The female Sprague Dawley rats were induced MI and were followed up with VEGF microparticles intramyocardially and CoQ10 nanoparticles orally or their combination with appropriate controls. Cardiac function was assessed by measuring ejection fraction before and after three months of therapy. Results demonstrate significant improvement in the ejection fraction after three months with both treatment forms individually; however the combination therapy failed to offer any synergism. In conclusion, VEGF microparticles and CoQ10 nanoparticles can be considered as promising strategies for managing MI

    Endothelial dysfunction is an early indicator of sepsis and neutrophil degranulation of septic shock in surgical patients

    Get PDF
    Producción CientíficaBackground: Stratification of the severity of infection is currently based on the Sequential Organ Failure Assessment (SOFA) score, which is difficult to calculate outside the ICU. Biomarkers could help to stratify the severity of infection in surgical patients. Methods: Levels of ten biomarkers indicating endothelial dysfunction, 22 indicating emergency granulopoiesis, and six denoting neutrophil degranulation were compared in three groups of patients in the first 12 h after diagnosis at three Spanish hospitals. Results: There were 100 patients with infection, 95 with sepsis and 57 with septic shock. Seven biomarkers indicating endothelial dysfunction (mid-regional proadrenomedullin (MR-ProADM), syndecan 1, thrombomodulin, angiopoietin 2, endothelial cell-specific molecule 1, vascular cell adhesion molecule 1 and E-selectin) had stronger associations with sepsis than infection alone. MR-ProADM had the highest odds ratio (OR) in multivariable analysis (OR 11·53, 95 per cent c.i. 4·15 to 32·08; P = 0·006) and the best area under the curve (AUC) for detecting sepsis (0·86, 95 per cent c.i. 0·80 to 0·91; P < 0·001). In a comparison of sepsis with septic shock, two biomarkers of neutrophil degranulation, proteinase 3 (OR 8·09, 1·34 to 48·91; P = 0·028) and lipocalin 2 (OR 6·62, 2·47 to 17·77; P = 0·002), had the strongest association with septic shock, but lipocalin 2 exhibited the highest AUC (0·81, 0·73 to 0·90; P < 0·001). Conclusion: MR-ProADM and lipocalin 2 could be alternatives to the SOFA score in the detection of sepsis and septic shock respectively in surgical patients with infection.Instituto de Salud Carlos III (grants PI15/01959, PI15/01451 and PI16/01156

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore