47 research outputs found

    Immunological and toxicological effects of bad indoor air to cause Dampness and Mold Hypersensitivity Syndrome

    Get PDF
    Water damage in buildings is a universe problem. Long-lasting or cumulative stay in water damaged buildings is a serious health hazard. Exposure to fungal and bacterial toxins, nanoparticles from dampness microbiota as well as decay products from construction materials together with biocides used for cleaning will first cause irritation of the mucosa and later chronic inflammation with stimulation or inhibition of the compartments of the innate and/or adaptive immunity. Mold-related disease has been called Dampness and Mold Hypersensitive Syndrome (DMHS) because hypersensitivity is the cornerstone feature of the disease. The background of hypersensitivity is both immunologic processes and hyperactivation of sensory receptors, neurogenic inflammation and central sensitisation. Immunologic hypersensitivity can occur either through the production of mold specific IgE-class antibodies, which is rare, or through sensitisation and proliferation of T and B specific lymphocyte clones. Immunological switch to Th2/Th17 arm of adaptive immunity often occurs. DMHS is a systemic and multi-organ disease where involvement of mucosa of pulmonary or gastrointestinal tract is central to the pathology. Symptoms include recurrent infections, chronic rhinosinusitis, swelling of the sinuses, irritation of the eyes and skin, voice problems, chronic non-productive cough, neurological symptoms, joint and muscle symptoms, irritable bowel syndrome and cognitive problems. Underdiagnosed or neglected continuous insidious inflammation may lead to Myalgic Encephalitis/Chronic Fatigue Syndrome (ME/CFS) especially when trigged by new infections or even vaccination. Multiple Chemical Sensitivity (MCS) may also develop, however in the later stages of the disease. Chronic cough is sometimes diagnosed as asthma if the criteria for asthma are met. Non-productive cough may also manifest allergic alveolitis, which is often overlooked. Avoidance of new exposure to dampness microbiota is crucial for recovery. We review the underlying toxicological and immunological mechanisms that are central in the pathology of DMHS.Peer reviewe

    Severe Sequelae to Mold-Related Illness as Demonstrated in Two Finnish Cohorts

    Get PDF
    The presence of toxic indoor molds with accompanying bacterial growth is clearly detrimental to human health. The pathophysiological and toxicological effects of toxins and structural components of molds and bacteria have been clarified in experiments conducted in tissue culture and animals, and there is convincing epidemiologic evidence; nonetheless their implications for human health are either ignored or denied, at least in Finland. In this communication, we describe two cohorts suffering severe sequelae to mold-related illness. One cohort is a nine-member family with pets that moved into a new house, which soon proved to be infested with pathogenic molds. The other cohort consists of 30 teachers and 50 students from a mold-infested school building. The first cohort experienced a plethora of mucosal irritation, neurological, skin, allergic, and other symptoms, with all family members ultimately developing a multiple chemical syndrome. In the second cohort, we detected a greatly elevated prevalence of autoimmune conditions and malignancies. We claim that mold-related illness exists in multiple facets; if not simply a transient mucosal irritation or even an increased risk of asthma onset or its exacerbation. We propose a scheme to explain the natural course of the mold-related illness. We recommend that future studies should combine data from, e.g., cancer, autoimmune, and endocrine disorder registers and neurological and mental health or neuropsychological registers with mold-exposed individuals being monitored for prolonged follow-up times.Peer reviewe

    Onko elämä tullut avaruudesta?

    Get PDF
    T i e t e e s s ä tapahtuu 6/2011 25 Aiemmin elämän uskottiin alkaneen maan pinnalla omin avuin. Viime tiedon mukaan elämään johtaneet orgaaniset molekyylit ovat syntyneet avaruudessa ja sataneet sieltä maahan. Siten ensimmäiset kemialliset reaktiot, jotka johtivat elämään maapallolla, luultavasti tapahtuivat ennen kuin maapallo oli muodostunutkaan (Jewell 2006)

    Toxic Indoor Air Is a Potential Risk of Causing Immuno Suppression and Morbidity—A Pilot Study

    Get PDF
    We aimed to establish an etiology-based connection between the symptoms experienced by the occupants of a workplace and the presence in the building of toxic dampness microbiota. The occupants (5/6) underwent a medical examination and urine samples (2/6) were analyzed by LC-MS/MS for mycotoxins at two time-points. The magnitude of inhaled water was estimated. Building-derived bacteria and fungi were identified and assessed for toxicity. Separate cytotoxicity tests using human THP-1 macrophages were performed from the office’s indoor air water condensates. Office-derived indoor water samples (n = 4/4) were toxic to human THP-1 macrophages. Penicillium, Acremonium sensu lato, Aspergillus ochraceus group and Aspergillus section Aspergillus grew from the building material samples. These colonies were toxic in boar sperm tests (n = 11/32); four were toxic to BHK-21 cells. Mycophenolic acid, which is a potential immunosuppressant, was detected in the initial and follow-up urine samples of (2/2) office workers who did not take immunosuppressive drugs. Their urinary mycotoxin profiles differed from household and unrelated controls. Our study suggests that the presence of mycotoxins in indoor air is linked to the morbidity of the occupants. The cytotoxicity test of the indoor air condensate is a promising tool for risk assessment in moisture-damaged buildings

    Toxic Indoor Air Is a Potential Risk of Causing Immuno Suppression and Morbidity-A Pilot Study

    Get PDF
    We aimed to establish an etiology-based connection between the symptoms experienced by the occupants of a workplace and the presence in the building of toxic dampness microbiota. The occupants (5/6) underwent a medical examination and urine samples (2/6) were analyzed by LC-MS/MS for mycotoxins at two time-points. The magnitude of inhaled water was estimated. Building-derived bacteria and fungi were identified and assessed for toxicity. Separate cytotoxicity tests using human THP-1 macrophages were performed from the office's indoor air water condensates. Office-derived indoor water samples (n = 4/4) were toxic to human THP-1 macrophages. Penicillium, Acremonium sensu lato, Aspergillus ochraceus group and Aspergillus section Aspergillus grew from the building material samples. These colonies were toxic in boar sperm tests (n = 11/32); four were toxic to BHK-21 cells. Mycophenolic acid, which is a potential immunosuppressant, was detected in the initial and follow-up urine samples of (2/2) office workers who did not take immunosuppressive drugs. Their urinary mycotoxin profiles differed from household and unrelated controls. Our study suggests that the presence of mycotoxins in indoor air is linked to the morbidity of the occupants. The cytotoxicity test of the indoor air condensate is a promising tool for risk assessment in moisture-damaged buildings.Peer reviewe

    Response to the Critics by Pekkanen et al

    Get PDF

    Toxic Indoor Air Is a Potential Risk of Causing Immuno Suppression and Morbidity—A Pilot Study

    Get PDF
    We aimed to establish an etiology-based connection between the symptoms experienced by the occupants of a workplace and the presence in the building of toxic dampness microbiota. The occupants (5/6) underwent a medical examination and urine samples (2/6) were analyzed by LC-MS/MS for mycotoxins at two time-points. The magnitude of inhaled water was estimated. Building-derived bacteria and fungi were identified and assessed for toxicity. Separate cytotoxicity tests using human THP-1 macrophages were performed from the office’s indoor air water condensates. Office-derived indoor water samples (n = 4/4) were toxic to human THP-1 macrophages. Penicillium, Acremonium sensu lato, Aspergillus ochraceus group and Aspergillus section Aspergillus grew from the building material samples. These colonies were toxic in boar sperm tests (n = 11/32); four were toxic to BHK-21 cells. Mycophenolic acid, which is a potential immunosuppressant, was detected in the initial and follow-up urine samples of (2/2) office workers who did not take immunosuppressive drugs. Their urinary mycotoxin profiles differed from household and unrelated controls. Our study suggests that the presence of mycotoxins in indoor air is linked to the morbidity of the occupants. The cytotoxicity test of the indoor air condensate is a promising tool for risk assessment in moisture-damaged buildings
    corecore