27 research outputs found

    Neocentromeres Form Efficiently at Multiple Possible Loci in Candida albicans

    Get PDF
    Centromeres are critically important for chromosome stability and integrity. Most eukaryotes have regional centromeres that include long tracts of repetitive DNA packaged into pericentric heterochromatin. Neocentromeres, new sites of functional kinetochore assembly, can form at ectopic loci because no DNA sequence is strictly required for assembly of a functional kinetochore. In humans, neocentromeres often arise in cells with gross chromosome rearrangements that rescue an acentric chromosome. Here, we studied the properties of centromeres in Candida albicans, the most prevalent fungal pathogen of humans, which has small regional centromeres that lack pericentric heterochromatin. We functionally delimited centromere DNA on Chromosome 5 (CEN5) and then replaced the entire region with the counter-selectable URA3 gene or other marker genes. All of the resulting cen5Δ::URA3 transformants stably retained both copies of Chr5, indicating that a functional neocentromere had assembled efficiently on the homolog lacking CEN5 DNA. Strains selected to maintain only the cen5Δ::URA3 homolog and no wild-type Chr5 homolog also grew well, indicating that neocentromere function is independent of the presence of any wild-type CEN5 DNA. Two classes of neocentromere (neoCEN) strains were distinguishable: “proximal neoCEN” and “distal neoCEN” strains. Neocentromeres in the distal neoCEN strains formed at loci about 200–450 kb from cen5Δ::URA3 on either chromosome arm, as detected by massively parallel sequencing of DNA isolated by CENP-ACse4p chromatin immunoprecipitation (ChIP). In the proximal neoCEN strains, the neocentromeres formed directly adjacent to cen5Δ::URA3 and moved onto the URA3 DNA, resulting in silencing of its expression. Functional neocentromeres form efficiently at several possible loci that share properties of low gene density and flanking repeated DNA sequences. Subsequently, neocentromeres can move locally, which can be detected by silencing of an adjacent URA3 gene, or can relocate to entirely different regions of the chromosome. The ability to select for neocentromere formation and movement in C. albicans permits mechanistic analysis of the assembly and maintenance of a regional centromere

    The Dark Energy Survey : more than dark energy – an overview

    Get PDF
    This overview paper describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4 m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion, the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae and other transients. The main goals of DES are to characterize dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large-scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper, we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from ‘Science Verification’, and from the first, second and third seasons of observations), what DES can tell us about the Solar system, the Milky Way, galaxy evolution, quasars and other topics. In addition, we show that if the cosmological model is assumed to be +cold dark matter, then important astrophysics can be deduced from the primary DES probes. Highlights from DES early data include the discovery of 34 trans-Neptunian objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed)

    Variations in the identity and complexity of endosymbiont combinations in whitefly hosts

    Get PDF
    The target of natural selection is suggested to be the holobiont - the organism together with its associated symbiotic microorganisms. The well-defined endosymbiotic communities of insects make them a useful model for exploring the role of symbiotic interactions in shaping the functional repertoire of plants and animals. Here, we studied the variations in the symbiotic communities of the sweet potato whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) by compiling a dataset of over 2,000 individuals derived from several independent screenings. The secondary endosymbionts harbored by each individual were clustered into entities termed Facultative Endosymbiont Combinations (FECs), each representing a natural assemblage of co-occurring bacterial genera. The association of FECs with whitefly individuals stratified the otherwise homogeneous population into holobiont units. We both identified bacterial assemblages that are specific to whitefly groups sharing unique genetic backgrounds, and characterized the FEC variations within these groups. The analysis revealed that FEC complexity is positively correlated with both distance from the equator and specificity of the genetic clade of the host insect. These findings highlight the importance of symbiotic combinations in shaping the distribution patterns of B. tabaci and possibly other insect species

    Genome-scale reconstruction of Paenarthrobacter aurescens TC1 metabolic model towards the study of atrazine bioremediation

    No full text
    Abstract Atrazine is an herbicide and a pollutant of great environmental concern that is naturally biodegraded by microbial communities. Paenarthrobacter aurescens TC1 is one of the most studied degraders of this herbicide. Here, we developed a genome scale metabolic model for P. aurescens TC1, iRZ1179, to study the atrazine degradation process at organism level. Constraint based flux balance analysis and time dependent simulations were used to explore the organism’s phenotypic landscape. Simulations aimed at designing media optimized for supporting growth and enhancing degradation, by passing the need in strain design via genetic modifications. Growth and degradation simulations were carried with more than 100 compounds consumed by P. aurescens TC1. In vitro validation confirmed the predicted classification of different compounds as efficient, moderate or poor stimulators of growth. Simulations successfully captured previous reports on the use of glucose and phosphate as bio-stimulators of atrazine degradation, supported by in vitro validation. Model predictions can go beyond supplementing the medium with a single compound and can predict the growth outcomes for higher complexity combinations. Hence, the analysis demonstrates that the exhaustive power of the genome scale metabolic reconstruction allows capturing complexities that are beyond common biochemical expertise and knowledge and further support the importance of computational platforms for the educated design of complex media. The model presented here can potentially serve as a predictive tool towards achieving optimal biodegradation efficiencies and for the development of ecologically friendly solutions for pollutant degradation

    Modeling trophic dependencies and exchanges among insects’ bacterial symbionts in a host-simulated environment

    Get PDF
    Abstract Background Individual organisms are linked to their communities and ecosystems via metabolic activities. Metabolic exchanges and co-dependencies have long been suggested to have a pivotal role in determining community structure. In phloem-feeding insects such metabolic interactions with bacteria enable complementation of their deprived nutrition. The phloem-feeding whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) harbors an obligatory symbiotic bacterium, as well as varying combinations of facultative symbionts. This well-defined bacterial community in B. tabaci serves here as a case study for a comprehensive and systematic survey of metabolic interactions within the bacterial community and their associations with documented occurrences of bacterial combinations. We first reconstructed the metabolic networks of five common B. tabaci symbionts genera (Portiera, Rickettsia, Hamiltonella, Cardinium and Wolbachia), and then used network analysis approaches to predict: (1) species-specific metabolic capacities in a simulated bacteriocyte-like environment; (2) metabolic capacities of the corresponding species’ combinations, and (3) dependencies of each species on different media components. Results The predictions for metabolic capacities of the symbionts in the host environment were in general agreement with previously reported genome analyses, each focused on the single-species level. The analysis suggests several previously un-reported routes for complementary interactions and estimated the dependency of each symbiont in specific host metabolites. No clear association was detected between metabolic co-dependencies and co-occurrence patterns. Conclusions The analysis generated predictions for testable hypotheses of metabolic exchanges and co-dependencies in bacterial communities and by crossing them with co-occurrence profiles, contextualized interaction patterns into a wider ecological perspective

    Star/galaxy separation at faint magnitudes : application to a simulated Dark Energy Survey

    Get PDF
    We address the problem of separating stars from galaxies in future large photometric surveys. We focus our analysis on simulations of the Dark Energy Survey (DES). In the first part of the paper, we derive the science requirements on star/galaxy separation, for measurement of the cosmological parameters with the gravitational weak lensing and large-scale structure probes. These requirements are dictated by the need to control both the statistical and systematic errors on the cosmological parameters, and by point spread function calibration. We formulate the requirements in terms of the completeness and purity provided by a given star/galaxy classifier. In order to achieve these requirements at faint magnitudes, we propose a new method for star/galaxy separation in the second part of the paper.We first use principal component analysis to outline the correlations between the objects parameters and extract from it the most relevant information.We then use the reduced set of parameters as input to an Artificial Neural Network. This multiparameter approach improves upon purely morphometric classifiers (such as the classifier implemented in SEXTRACTOR), especially at faint magnitudes: it increases the purity by up to 20 per cent for stars and by up to 12 per cent for galaxies, at i-magnitude fainter than 23

    Decidual-tissue-resident memory T cells protect against nonprimary human cytomegalovirus infection at the maternal-fetal interface

    No full text
    Summary: Congenital cytomegalovirus (cCMV) is the most common intrauterine infection, leading to infant neurodevelopmental disabilities. An improved knowledge of correlates of protection against cCMV is needed to guide prevention strategies. Here, we employ an ex vivo model of human CMV (HCMV) infection in decidual tissues of women with and without preconception immunity against CMV, recapitulating nonprimary vs. primary infection at the authentic maternofetal transmission site. We show that decidual tissues of women with preconception immunity against CMV exhibit intrinsic resistance to HCMV, mounting a rapid activation of tissue-resident memory CD8+ and CD4+ T cells upon HCMV reinfection. We further reveal the role of HCMV-specific decidual-tissue-resident CD8+ T cells in local protection against nonprimary HCMV infection. The findings could inform the development of a vaccine against cCMV and provide insights for further studies of the integrity of immune defense against HCMV and other pathogens at the human maternal-fetal interface

    Additional file 5:

    No full text
    Predicted source metabolites in the whitefly bacteriocyte with and without consideration of the metabolic contribution of Portiera aleyrodidarum. (XLSX 17 kb
    corecore