310 research outputs found
Topological Born-Infeld-dilaton black holes
We construct a new analytic solution of Einstein-Born-Infeld-dilaton theory
in the presence of Liouville-type potentials for the dilaton field. These
solutions describe dilaton black holes with nontrivial topology and nonlinear
electrodynamics. Black hole horizons and cosmological horizons in these
spacetimes, can be a two-dimensional positive, zero or negative constant
curvature surface. The asymptotic behavior of these solutions are neither flat
nor (A)dS. We calculate the conserved and thermodynamic quantities of these
solutions and verify that these quantities satisfy the first law of black hole
thermodynamics.Comment: 15 pages, 7 figures, references added, to appear in Phys. Lett.
Non-Abelian Black Holes in Brans-Dicke Theory
We find a black hole solution with non-Abelian field in Brans-Dicke theory.
It is an extension of non-Abelian black hole in general relativity. We discuss
two non-Abelian fields: "SU(2)" Yang-Mills field with a mass (Proca field) and
the SU(2)SU(2) Skyrme field. In both cases, as in general relativity,
there are two branches of solutions, i.e., two black hole solutions with the
same horizon radius. Masses of both black holes are always smaller than those
in general relativity. A cusp structure in the mass-horizon radius
(-) diagram, which is a typical symptom of stability change in
catastrophe theory, does not appear in the Brans-Dicke frame but is found in
the Einstein conformal frame. This suggests that catastrophe theory may be
simply applied for a stability analysis as it is if we use the variables in the
Einstein frame. We also discuss the effects of the Brans-Dicke scalar field on
black hole structure.Comment: 31 pages, revtex, 21 figure
Gravitating monopole and its black hole solution in Brans-Dicke Theory
We find a self-gravitating monopole and its black hole solution in
Brans-Dicke theory. We mainly discuss the properties of these solutions in the
Einstein frame and compare the solutions with those in general relativity.Comment: 20 pages,revtex,26 figure
Endogenous reference RNAs for microRNA quantitation in formalin-fixed, paraffin-embedded lymph node tissue
Lymph node metastasis is one of the most important factors for tumor dissemination. Quantifying microRNA (miRNA) expression using real-time PCR in formalin-fixed, paraffin-embedded (FFPE) lymph node can provide valuable information regarding the biological research for cancer metastasis. However, a universal endogenous reference gene has not been identified in FFPE lymph node. This study aimed to identify suitable endogenous reference genes for miRNA expression analysis in FFPE lymph node. FFPE lymph nodes were obtained from 41 metastatic cancer and from 16 non-cancerous tissues. We selected 10 miRNAs as endogenous reference gene candidates using the global mean method. The stability of candidate genes was assessed by the following four statistical tools: BestKeeper, geNorm, NormFinder, and the comparative ΔCt method. miR-103a was the most stable gene among candidate genes. However, the use of a single miR-103a was not recommended because its stability value exceeded the reference value. Thus, we combined stable genes and investigated the stability and the effect of gene normalization. The combination of miR-24, miR-103a, and let-7a was identified as one of the most stable sets of endogenous reference genes for normalization in FFPE lymph node. This study may provide a basis for miRNA expression analysis in FFPE lymph node tissue
Th17 cells differentiated with mycelial membranes of Candida albicans prevent oral candidiasis
Candida albicans is a human commensal that causes opportunistic infections. Th17 cells provide resistance against mucosal infection with C. albicans; however, the T cell antigens remain little known. Our final goal is to find effective T cell antigens of C. albicans that are responsible for immunotherapy against candidiasis. Here, we prepared fractions including cytosol, membrane and cell wall from yeast and mycelial cells. Proteins derived from a membrane fraction of mycelial cells effectively induced differentiation of CD4+ T cells into IL-17A-producing Th17 cells. To confirm the immunological response in vivo of proteins from mycelial membrane, we performed adoptive transfer experiments using ex vivo stimulated CD4+ T cells from IL-17A-GFP reporter mice. Mycelial membrane-differentiated CD4+ Th17 cells adoptively transferred intravenously prevented oral candidiasis by oral infection of C. albicans, compared with control anti-CD3-stimulated CD4+ T cells. This was confirmed by the clinical score and the number of neutrophils on the infected tissues. These data suggest that effective T cell antigens against candidiasis could be present in the membrane protein fraction of mycelial cells. The design of novel vaccination strategies against candidiasis will be our next step.福岡歯科大学2017年
Structural Basis of PP2A Inhibition by Small t Antigen
The SV40 small t antigen (ST) is a potent oncoprotein that perturbs the function of protein phosphatase 2A (PP2A). ST directly interacts with the PP2A scaffolding A subunit and alters PP2A activity by displacing regulatory B subunits from the A subunit. We have determined the crystal structure of full-length ST in complex with PP2A A subunit at 3.1 Å resolution. ST consists of an N-terminal J domain and a C-terminal unique domain that contains two zinc-binding motifs. Both the J domain and second zinc-binding motif interact with the intra-HEAT-repeat loops of HEAT repeats 3–7 of the A subunit, which overlaps with the binding site of the PP2A B56 subunit. Intriguingly, the first zinc-binding motif is in a position that may allow it to directly interact with and inhibit the phosphatase activity of the PP2A catalytic C subunit. These observations provide a structural basis for understanding the oncogenic functions of ST
Dynamical Boson Stars
The idea of stable, localized bundles of energy has strong appeal as a model
for particles. In the 1950s John Wheeler envisioned such bundles as smooth
configurations of electromagnetic energy that he called {\em geons}, but none
were found. Instead, particle-like solutions were found in the late 1960s with
the addition of a scalar field, and these were given the name {\em boson
stars}. Since then, boson stars find use in a wide variety of models as sources
of dark matter, as black hole mimickers, in simple models of binary systems,
and as a tool in finding black holes in higher dimensions with only a single
killing vector. We discuss important varieties of boson stars, their dynamic
properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in
Relativity; major revision in 201
- …