29 research outputs found

    Too Hot to Handle: An Evaluation of the Effect of Thermal Visual Representation on User Grasping Interaction in Virtual Reality

    Get PDF
    Influence of interaction fidelity and rendering quality on perceived user experience have been largely explored in Virtual Reality (VR). However, differences in interaction choices triggered by these rendering cues have not yet been explored. We present a study analysing the effect of thermal visual cues and contextual information on 50 participants' approach to grasp and move a virtual mug. This study comprises 3 different temperature cues (baseline empty, hot and cold) and 4 contextual representations; all embedded in a VR scenario. We evaluate 2 different hand representations (abstract and human) to assess grasp metrics. Results show temperature cues influenced grasp location, with the mug handle being predominantly grasped with a smaller grasp aperture for the hot condition, while the body and top were preferred for baseline and cold conditions

    Interaction haptique bimanuelle avec des environnements virtuels

    No full text
    In Virtual Reality (VR), the haptic sense increases the immersion of users in a Virtual Environment (VE) with which they interact in real time. In this Ph.D thesis, we propose contributions to improve two-handed interaction in haptics with VEs. We first address issues with bimanual interaction in VEs using haptic devices with single effectors. We propose an interaction technique called double bubble for exploration of VEs through a combination of position and rate control. We also present a manipulation technique called magnetic pinch which facilitates the grasping of virtual objects with simple rigid proxies. Simultaneous grasping and exploration of the VE is enhanced using common control modes. A user evaluation was conducted to assess the efficiency of these techniques. We then focus on improving the computation of contact surfaces. We propose a god-finger method to render finger padlike surfaces from a single contact point. It relies on a simple scan of the local geometry of the object in contact, and is this less costly than soft body simulation methods. The method is adapted for interaction using simple or more complex rigid virtual proxies, and with rigid or deformable objects, including rough surfaces. A visual rendering method provides feedback on the shape of the contact surface. Finally, we address the resolution of contacts during dexterous manipulation of virtual objects through soft fingers. The computation of contact mechanics is improved by aggregating the multiple contact constraints involved. A method for nonuniform pressure distribution over the contact surface adapts the response when touching sharp edges. We use the Coulomb-Contensou friction model to efficiently simulate torsional friction. The approach is evaluated with a deformable hand model for real time interaction. The contributions of this manuscript open novel perspectives in the context of bimanual haptics and VR, allowing more natural interaction with more complex VEs.En Réalité Virtuelle (RV), le sens haptique accroît l’immersion d’un utilisateur dans un Environnement Virtuel (EV) avec lequel il interagit en temps réel. Dans cette thèse, nous proposons des approches pour améliorer l’interaction haptique à deux mains avec des EV. Nous abordons d’abord des problèmes avec l’interaction bimanuelle dans des EV avec des interfaces à effecteur unique. Nous proposons une technique d’interaction nommée la double bulle pour l’exploration d’EV avec une combinaison de contrôle en position et en vitesse. Nous présentons aussi une technique de manipulation nommée prise magnétique qui facilite la saisie d’objets virtuels avec des proxys rigides simples. Des modes de contrôle communs sont utilisés pour améliorer la saisie et l’exploration simultanées. Une évaluation utilisateur a été réalisée pour mesurer l’efficacité de ces techniques. Nous nous intéressons ensuite au calcul de surfaces de contact. Nous proposons une technique nommée god-finger pour rendre des surfaces similaires à celles générées par des doigts à partir d’un unique point de contact. Elle est basée sur un simple parcours de la géométrie locale de l’objet en contact, et est donc moins coûteuse que des méthodes de simulation de corps souples. La méthode est adaptée pour l’interaction avec des proxys rigides simples ou plus complexes, ainsi qu’avec des objets rigides ou déformables, y compris avec des surfaces rugueuses. Une méthode de rendu visuel donne un retour à l’utilisateur sur la forme de la surface de contact. Enfin, nous abordons la résolution de contacts durant la manipulation dextre d’objets virtuels avec des doigts souples. Le calcul des mécaniques de contact est amélioré en agrégeant les multiples contraintes de contact concernées. Une méthode de distribution de pression non uniforme sur la surface de contact adapte la réponse lors d’un contact contre des arêtes pointues. Nous utilisons le modèle de frottement de Coulomb- Contensou pour simuler efficacement le frottement en torsion. L’approche est évaluée avec un modèle de main déformable pour de l’interaction en temps réel. Les travaux présentés dans ce manuscrit ouvrent de nouvelles perspectives dans le contexte de l’haptique bimanuelle et de la RV, en permettant une interaction plus naturelle avec des EV plus complexes

    Interaction haptique bimanuelle avec des environnements virtuels

    No full text
    In Virtual Reality (VR), the haptic sense increases the immersion of users in a Virtual Environment (VE) with which they interact in real time. In this Ph.D thesis, we propose contributions to improve two-handed interaction in haptics with VEs. We first address issues with bimanual interaction in VEs using haptic devices with single effectors. We propose an interaction technique called double bubble for exploration of VEs through a combination of position and rate control. We also present a manipulation technique called magnetic pinch which facilitates the grasping of virtual objects with simple rigid proxies. Simultaneous grasping and exploration of the VE is enhanced using common control modes. A user evaluation was conducted to assess the efficiency of these techniques. We then focus on improving the computation of contact surfaces. We propose a god-finger method to render finger padlike surfaces from a single contact point. It relies on a simple scan of the local geometry of the object in contact, and is this less costly than soft body simulation methods. The method is adapted for interaction using simple or more complex rigid virtual proxies, and with rigid or deformable objects, including rough surfaces. A visual rendering method provides feedback on the shape of the contact surface. Finally, we address the resolution of contacts during dexterous manipulation of virtual objects through soft fingers. The computation of contact mechanics is improved by aggregating the multiple contact constraints involved. A method for nonuniform pressure distribution over the contact surface adapts the response when touching sharp edges. We use the Coulomb-Contensou friction model to efficiently simulate torsional friction. The approach is evaluated with a deformable hand model for real time interaction. The contributions of this manuscript open novel perspectives in the context of bimanual haptics and VR, allowing more natural interaction with more complex VEs.En Réalité Virtuelle (RV), le sens haptique accroît l’immersion d’un utilisateur dans un Environnement Virtuel (EV) avec lequel il interagit en temps réel. Dans cette thèse, nous proposons des approches pour améliorer l’interaction haptique à deux mains avec des EV. Nous abordons d’abord des problèmes avec l’interaction bimanuelle dans des EV avec des interfaces à effecteur unique. Nous proposons une technique d’interaction nommée la double bulle pour l’exploration d’EV avec une combinaison de contrôle en position et en vitesse. Nous présentons aussi une technique de manipulation nommée prise magnétique qui facilite la saisie d’objets virtuels avec des proxys rigides simples. Des modes de contrôle communs sont utilisés pour améliorer la saisie et l’exploration simultanées. Une évaluation utilisateur a été réalisée pour mesurer l’efficacité de ces techniques. Nous nous intéressons ensuite au calcul de surfaces de contact. Nous proposons une technique nommée god-finger pour rendre des surfaces similaires à celles générées par des doigts à partir d’un unique point de contact. Elle est basée sur un simple parcours de la géométrie locale de l’objet en contact, et est donc moins coûteuse que des méthodes de simulation de corps souples. La méthode est adaptée pour l’interaction avec des proxys rigides simples ou plus complexes, ainsi qu’avec des objets rigides ou déformables, y compris avec des surfaces rugueuses. Une méthode de rendu visuel donne un retour à l’utilisateur sur la forme de la surface de contact. Enfin, nous abordons la résolution de contacts durant la manipulation dextre d’objets virtuels avec des doigts souples. Le calcul des mécaniques de contact est amélioré en agrégeant les multiples contraintes de contact concernées. Une méthode de distribution de pression non uniforme sur la surface de contact adapte la réponse lors d’un contact contre des arêtes pointues. Nous utilisons le modèle de frottement de Coulomb- Contensou pour simuler efficacement le frottement en torsion. L’approche est évaluée avec un modèle de main déformable pour de l’interaction en temps réel. Les travaux présentés dans ce manuscrit ouvrent de nouvelles perspectives dans le contexte de l’haptique bimanuelle et de la RV, en permettant une interaction plus naturelle avec des EV plus complexes

    MetAmyl: A METa-Predictor for AMYLoid Proteins

    Get PDF
    International audienceThe aggregation of proteins or peptides in amyloid fibrils is associated with a number of clinical disorders, including Alzheimer's, Huntington's and prion diseases, medullary thyroid cancer, renal and cardiac amyloidosis. Despite extensive studies, the molecular mechanisms underlying the initiation of fibril formation remain largely unknown. Several lines of evidence revealed that short amino-acid segments (hot spots), located in amyloid precursor proteins act as seeds for fibril elongation. Therefore, hot spots are potential targets for diagnostic/therapeutic applications, and a current challenge in bioinformatics is the development of methods to accurately predict hot spots from protein sequences. In this paper, we combined existing methods into a meta-predictor for hot spots prediction, called MetAmyl for METapredictor for AMYLoid proteins. MetAmyl is based on a logistic regression model that aims at weighting predictions from a set of popular algorithms, statistically selected as being the most informative and complementary predictors. We evaluated the performances of MetAmyl through a large scale comparative study based on three independent datasets and thus demonstrated its ability to differentiate between amyloidogenic and non-amyloidogenic polypeptides. Compared to 9 other methods, MetAmyl provides significant improvement in prediction on studied datasets. We further show that MetAmyl is efficient to highlight the effect of point mutations involved in human amyloidosis, so we suggest this program should be a useful complementary tool for the diagnosis of these diseases

    The God-Finger Method for Improving 3D Interaction with Virtual Objects through Simulation of Contact Area

    No full text
    International audienceIn physically-based virtual environments, interaction with objects generally happens through contact points that barely represent the area of contact between the user's hand and the virtual object. This representation of contacts contrasts with real life situations where our finger pads have the ability to deform slightly to match the shape of a touched object. In this paper, we propose a method called god-finger to simulate a contact area from a single contact point determined by collision detection, and usable in a rigid body physics engine. The method uses the geometry of the object and the force applied to it to determine additional contact points that will emulate the presence of a contact area between the user's proxy and the virtual object. It could improve the manipulation of objects by constraining the rotation of touched objects in a similar manner to actual finger pads. An implementation in a physics engine shows that the method could make for more realistic behaviour when manipulating objects while keeping high simulation rates

    A Survey on Bimanual Haptic Interaction

    No full text
    International audienceWhen interacting with virtual objects through haptic devices, most of the time only one hand is involved. However, the increase of computational power, along with the decrease of device costs, allow more and more the use of dual haptic devices. The field which encompasses all studies of the haptic interaction with either remote or virtual environments using both hands of the same person is referred to as bimanual haptics. It differs from the common unimanual haptic field notably due to specificities of the human bimanual haptic system, e.g., the dominance of the hands, their differences in perception and their interactions at a cognitive level. These specificities call for adapted solutions in terms of hardware and software when applying the use of two hands to computer haptics. This paper reviews the state of the art on bimanual haptics, encompassing the human factors in bimanual haptic interaction, the currently available bimanual haptic devices, the software solutions for two-handed haptic interaction, and the existing interaction techniques

    A Survey on Bimanual Haptic Interaction

    No full text

    Prediction performances, based on the training dataset are given for the 10 compared predictors.

    No full text
    <p>For each method, the accuracy, the sensitivity, the specificity and the Matthews correlation coefficients (MCC) are reported. Numbers in brackets correspond to 95% confidence intervals (95% C.I.) that were obtained using bootstrap replicates (Robin <i>et al.</i>, 2011). For the MetAmyl classifier, results were obtained using a Leave-One-Out Cross Validation.</p
    corecore