90 research outputs found

    An investigation of the close environment of beta Cep with the VEGA/CHARA interferometer

    Full text link
    High-precision interferometric measurements of pulsating stars help to characterize their close environment. In 1974, a close companion was discovered around the pulsating star beta Cep using the speckle interferometry technique and features at the limit of resolution (20 milli-arcsecond or mas) of the instrument were mentioned that may be due to circumstellar material. Beta Cep has a magnetic field that might be responsible for a spherical shell or ring-like structure around the star as described by the MHD models. Using the visible recombiner VEGA installed on the CHARA long-baseline interferometer at Mt. Wilson, we aim to determine the angular diameter of beta Cep and resolve its close environment with a spatial resolution up to 1 mas level. Medium spectral resolution (R=6000) observations of beta Cep were secured with the VEGA instrument over the years 2008 and 2009. These observations were performed with the S1S2 (30m) and W1W2 (100m) baselines of the array. We investigated several models to reproduce our observations. A large-scale structure of a few mas is clearly detected around the star with a typical flux relative contribution of 0.23 +- 0.02. Our best model is a co-rotational geometrical thin ring around the star as predicted by magnetically-confined wind shock models. The ring inner diameter is 8.2 +- 0.8 mas and the width is 0.6 +- 0.7 mas. The orientation of the rotation axis on the plane of the sky is PA = 60 +- 1 deg, while the best fit of the mean angular diameter of beta Cep gives UD[V] = 0.22 +- 0.05 mas. Our data are compatible with the predicted position of the close companion of beta Cep. These results bring additional constraints on the fundamental parameters and on the future MHD and asteroseismological models of the star.Comment: Paper accepted for publication in A&A (in press

    The fundamental parameters of the roAp star γ\gamma Equulei

    Full text link
    Physical processes working in the stellar interiors as well as the evolution of stars depend on some fundamental stellar properties, such as mass, radius, luminosity, and chemical abundances. A classical way to test stellar interior models is to compare the predicted and observed location of a star on theoretical evolutionary tracks in a H-R diagram. This requires the best possible determinations of stellar mass, radius, luminosity and abundances. To derive its fundamental parameters, we observed the well-known rapidly oscillating Ap star, γ\gamma Equ, using the visible spectro-interferometer VEGA installed on the optical CHARA array. We computed the calibrated squared visibility and derived the limb-darkened diameter. We used the whole energy flux distribution, the parallax and this angular diameter to determine the luminosity and the effective temperature of the star. We obtained a limb-darkened angular diameter of 0.564~±\pm~0.017~mas and deduced a radius of RR~=~2.20~±\pm~0.12~R{\rm R_{\odot}}. Without considering the multiple nature of the system, we derived a bolometric flux of (3.12±0.21)×107(3.12\pm 0.21)\times 10^{-7} erg~cm2^{-2}~s1^{-1} and an effective temperature of 7364~±\pm~235~K, which is below the effective temperature that has been previously determined. Under the same conditions we found a luminosity of LL~=~12.8~±\pm~1.4~L{\rm L_{\odot}}. When the contribution of the closest companion to the bolometric flux is considered, we found that the effective temperature and luminosity of the primary star can be, respectively, up to \sim~100~K and up to \sim~0.8~L_\odot smaller than the values mentioned above.These new values of the radius and effective temperature should bring further constraints on the asteroseismic modelling of the star.Comment: Accepted by A&

    Improving the surface brightness-color relation for early-type stars using optical interferometry

    Full text link
    The aim of this work is to improve the SBC relation for early-type stars in the 1VK0-1 \leq V-K \leq 0 color domain, using optical interferometry. Observations of eight B- and A-type stars were secured with the VEGA/CHARA instrument in the visible. The derived uniform disk angular diameters were converted into limb darkened angular diameters and included in a larger sample of 24 stars, already observed by interferometry, in order to derive a revised empirical relation for O, B, A spectral type stars with a V-K color index ranging from -1 to 0. We also took the opportunity to check the consistency of the SBC relation up to VK4V-K \simeq 4 using 100 additional measurements. We determined the uniform disk angular diameter for the eight following stars: γ\gamma Ori, ζ\zeta Per, 88 Cyg, ι\iota Her, λ\lambda Aql, ζ\zeta Peg, γ\gamma Lyr, and δ\delta Cyg with V-K color ranging from -0.70 to 0.02 and typical precision of about 1.5%1.5\%. Using our total sample of 132 stars with VKV-K colors index ranging from about 1-1 to 44, we provide a revised SBC relation. For late-type stars (0VK40 \leq V-K \leq 4), the results are consistent with previous studies. For early-type stars (1VK0-1 \leq V-K \leq 0), our new VEGA/CHARA measurements combined with a careful selection of the stars (rejecting stars with environment or stars with a strong variability), allows us to reach an unprecedented precision of about 0.16 magnitude or 7%\simeq 7\% in terms of angular diameter.Comment: 13 pages, 5 figures, accepted for publication in A&

    Time, spatial, and spectral resolution of the Halpha line-formation region of Deneb and Rigel with the VEGA/CHARA interferometer

    Get PDF
    BA-type supergiants are amongst the most optically-bright stars. They are observable in extragalactic environments, hence potential accurate distance indicators. Emission activity in the Halpha line of the BA supergiants Rigel (B8Ia) and Deneb (A2Ia) is indicative of presence of localized time-dependent mass ejections. Here, we employ optical interferometry to study the Halpha line-formation region in these stellar environments. High spatial- (0.001 arcsec) and spectral- (R=30 000) resolution observations of Halpha were obtained with the visible recombiner VEGA installed on the CHARA interferometer, using the S1S2 array-baseline (34m). Six independent observations were done on Deneb over the years 2008 and 2009, and two on Rigel in 2009. We analyze this dataset with the 1D non-LTE radiative-transfer code CMFGEN, and assess the impact of the wind on the visible and near-IR interferometric signatures, using both Balmer-line and continuum photons. We observe a visibility decrease in Halpha for both Rigel and Deneb, suggesting that the line-formation region is extended (1.5-1.75 R*). We observe a significant visibility decrease for Deneb in the SiII6371 line. We witness time variations in the differential phase for Deneb, implying an inhomogeneous and unsteady circumstellar environment, while no such variability is seen in differential visibilities. Radiative-transfer modeling of Deneb, with allowance for stellar-wind mass loss, accounts fairly well for the observed decrease in the Halpha visibility. Based on the observed differential visibilities, we estimate that the mass-loss rate of Deneb has changed by less than 5%

    Spectral and spatial imaging of the Be+sdO binary phi Persei

    Full text link
    The rapidly rotating Be star phi Persei was spun up by mass and angular momentum transfer from a now stripped-down, hot subdwarf companion. Here we present the first high angular resolution images of phi Persei made possible by new capabilities in longbaseline interferometry at near-IR and visible wavelengths. We observed phi Persei with the MIRC and VEGA instruments of the CHARA Array. Additional MIRC-only observations were performed to track the orbital motion of the companion, and these were fit together with new and existing radial velocity measurements of both stars to derive the complete orbital elements and distance. The hot subdwarf companion is clearly detected in the near-IR data at each epoch of observation with a flux contribution of 1.5% in the H band, and restricted fits indicate that its flux contribution rises to 3.3% in the visible. A new binary orbital solution is determined by combining the astrometric and radial velocity measurements. The derived stellar masses are 9.6+-0.3Msol and 1.2+-0.2Msol for the Be primary and subdwarf secondary, respectively. The inferred distance (186 +- 3 pc), kinematical properties, and evolutionary state are consistent with membership of phi Persei in the alpha Per cluster. From the cluster age we deduce significant constraints on the initial masses and evolutionary mass transfer processes that transformed the phi Persei binary system. The interferometric data place strong constraints on the Be disk elongation, orientation, and kinematics, and the disk angular momentum vector is coaligned with and has the same sense of rotation as the orbital angular momentum vector. The VEGA visible continuum data indicate an elongated shape for the Be star itself, due to the combined effects of rapid rotation, partial obscuration of the photosphere by the circumstellar disk, and flux from the bright inner disk.Comment: 16 pages, 6 figures, 1 Anne

    A resolved, au-scale gas disk around the B[e] star HD 50138

    Get PDF
    articleHD 50138 is a B[e] star surrounded by a large amount of circumstellar gas and dust. Its spectrum shows characteristics which may indicate either a pre- or a post-main-sequence system. Mapping the kinematics of the gas in the inner few au of the system contributes to a better understanding of its physical nature. We present the first high spatial and spectral resolution interferometric observations of the Brγ line of HD 50138, obtained with VLTI/AMBER. The line emission originates in a region more compact (up to 3 au) than the continuum-emitting region. Blue- and red-shifted emission originates from the two different hemispheres of an elongated structure perpendicular to the polarization angle. The velocity of the emitting medium decreases radially. An overall offset along the NW direction between the line- and continuum-emitting regions is observed. We compare the data with a geometric model of a thin Keplerian disk and a spherical halo on top of a Gaussian continuum. Most of the data are well reproduced by this model, except for the variability, the global offset and the visibility at the systemic velocity. The evolutionary state of the system is discussed; most diagnostics are ambiguous and may point either to a post-main-sequence or a pre-main-sequence nature.National Science FoundationGeorgia State UniversityW.M. Keck FoundationDavid and Lucile Packard FoundationFizeau ProgramCNRS-PICS progra

    A new interferometric study of four exoplanet host stars : {\theta} Cygni, 14 Andromedae, {\upsilon} Andromedae and 42 Draconis

    Get PDF
    Studying exoplanet host stars is of the utmost importance to establish the link between the presence of exoplanets around various types of stars and to understand the respective evolution of stars and exoplanets. Using the limb-darkened diameter (LDD) obtained from interferometric data, we determine the fundamental parameters of four exoplanet host stars. We are particularly interested in the F4 main-sequence star, {\theta} Cyg, for which Kepler has recently revealed solar-like oscillations that are unexpected for this type of star. Furthermore, recent photometric and spectroscopic measurements with SOPHIE and ELODIE (OHP) show evidence of a quasi-periodic radial velocity of \sim150 days. Models of this periodic change in radial velocity predict either a complex planetary system orbiting the star, or a new and unidentified stellar pulsation mode. We performed interferometric observations of {\theta} Cyg, 14 Andromedae, {\upsilon} Andromedae and 42 Draconis for two years with VEGA/CHARA (Mount Wilson, California) in several three-telescope configurations. We measured accurate limb darkened diameters and derived their radius, mass and temperature using empirical laws. We obtain new accurate fundamental parameters for stars 14 And, {\upsilon} And and 42 Dra. We also obtained limb darkened diameters with a minimum precision of \sim 1.3%, leading to minimum planet masses of Msini=5.33\pm 0.57, 0.62 \pm 0.09 and 3.79\pm0.29 MJup for 14 And b, {\upsilon} And b and 42 Dra b, respectively. The interferometric measurements of {\theta} Cyg show a significant diameter variability that remains unexplained up to now. We propose that the presence of these discrepancies in the interferometric data is caused by either an intrinsic variation of the star or an unknown close companion orbiting around it.Comment: 10 pages + 2 pages appendix, 16 figures, accepted for publication in A&
    corecore