37 research outputs found

    The effect of granulocyte colony stimulating factor on genotoxicity in allogeneic peripheral blood stem cell transplantation donors: A prospective case-control study

    Get PDF
    Background. Every year, thousands of donors are exposed to granulocyte-colony stimulating factor (G-CSF) for stem cell mobilization in hematopoietic stem cell transplantations (HSCT). Previous studies about the genotoxicity of G-CSF were inconclusive. In this study, the genotoxic effects of G-CSF in peripheral blood stem cell (PBSC) donors were evaluated prospectively by using three different validated and reliable methods for the first time in the literature to the best of our knowledge. Methods. Donors of PBSC transplantation (n=36), who received G-CSF were evaluated for genotoxicity by micronucleus test (MNT), nuclear division index (NDI), and comet assay (CA). Genotoxic effects are expected to cause an increase in MNT and CA values and decrease in NDI. Blood samples were collected at three time-points (TP): before starting G-CSF (TP1), after G-CSF for five days (TP2), and one month after the last dose (TP3). Sixteen controls were included for baseline comparison of genotoxicity tests. CD34 cell counts and hemograms were also analyzed. Results. MNT and CA parameters; comet and tail length, tail DNA%, and tail moment, showed no change in time whereas another CA parameter, Olive’s tail moment (OTM) was increased significantly at TP3 compared to both baseline and TP2 (p=0.002 and p=0.017, respectively). Nuclear division index decreased significantly at TP2 (p[removed]Ankara University Scientific Study Fun

    The role of tumor necrosis factor-alpha -308 G/A and transforming growth factor-beta 1 -915 G/C polymorphisms in childhood idiopathic thrombocytopenic purpura

    Get PDF
    Abstract Objective: To increase our understanding of the etiology of idiopathic thrombocytopenic purpura (ITP) some cytokine gene polymorphisms were analyzed for susceptibility to the disease. The aim of this study was to investigate the role of tumor necrosis factor-alpha (TNF-α) -308 G/A and transforming growth factor-beta

    The role of tumor necrosis factor-alpha -308 G/A and transforming growth factor-beta 1 -915 G/C polymorphisms in childhood idiopathic thrombocytopenic purpura

    Get PDF
    Objective: To increase our understanding of the etiology of idiopathic thrombocytopenic purpura (ITP) some cytokine gene polymorphisms were analyzed for susceptibility to the disease. The aim of this study was to investigate the role of tumor necrosis factor-alpha (TNF-α) -308 G/A and transforming growth factor-beta 1 (TGF-β1) –915 G/C polymorphisms in the development and clinical progression of childhood ITP.Materials and Methods: In all, 50 pediatric patients with ITP (25 with acute ITP and 25 with chronic ITP) and 48 healthy controls were investigated via LightCycler® PCR analysis for TNF-α -308 G/A and TGF-β1 -915 G/C polymorphisms.Results: The frequency of TNF-α -308 G/A polymorphism was 20%, 16%, and 22.9% in the acute ITP patients, chronic ITP patients, and controls, respectively (p>0.05). The frequency of TGF-β1 -915 G/C polymorphism was 16%, 8%, and 8.3% in the acute ITP patients, chronic ITP patients, and controls, respectively (p>0.05). The risk of developing ITP and clinical progression were not associated with TNF-α -308 G/A (OR: 0.738, 95% CI: 0.275-1.981, and OR: 0.762, 95% CI: 0.179-3.249) or TGF-β1 -915 G/C (OR: 1.5, 95% CI: 0.396-5.685, and OR: 0.457, 95% CI: 0.076-2.755) polymorphisms. Conclusion: The frequency of TNF-α -308 G/A and TGF-β1 -915 G/C polymorphisms did not differ between pediatric ITP patients and healthy controls, and these polymorphisms were not associated with susceptibility to the development and clinical progression of the disease

    CASE REPORT - Hyponatremia as a cause of prolonged seizures in a child with sickle cell anemia

    No full text
    We report a successful outcome on recurrent hyponatremic seizures, treated with agressive sodium replacement therapy in a 12-year-old girl with sickle cell anemia. The cause of her hyponatremia was probably tubular damage due to vaso-occlusive crisis. We achieved rapid correction in neurologic findings, serum sodium level and urinalysis with sodium replacement and fluid therapy in this patient. We excluded stroke based on the findings in cranial magnetic resonance imaging. We conclude that severe seizures found in sickle cell anemia may result from hyponatremia that can be treated by sodium replacement therapy. (J Pediatr Neurol 2004; 2(4): 231-233)

    Premature Atherosclerosis in Children With beta-Thalassemia Major

    No full text
    Objectives: In this study, we aimed to investigate the relationship between chronic hemolysis and increased body iron burden with development of premature atherosclerosis by carotid intima-media thickness (IMT), ferritin, serum lipid profile, homocysteine, nitrate/nitrite, and chitotriosidase enzyme activity in children with beta-thalassemia major

    A Disease-Causing Single Amino Acid Deletion in the Coiled-Coil Domain of RAD50 Impairs MRE11 Complex Functions in Yeast and Humans

    No full text
    The MRE11-RAD50-NBS1 complex plays a central role in response to DNA double-strand breaks. Here, we identify a patient with bone marrow failure and developmental defects caused by biallelic RAD50 mutations. One of the mutations creates a null allele, whereas the other (RAD50E1035Δ) leads to the loss of a single residue in the heptad repeats within the RAD50 coiled-coil domain. This mutation represents a human RAD50 separation-of-function mutation that impairs DNA repair, DNA replication, and DNA end resection without affecting ATM-dependent DNA damage response. Purified recombinant proteins indicate that RAD50E1035Δ impairs MRE11 nuclease activity. The corresponding mutation in Saccharomyces cerevisiae causes severe thermosensitive defects in both DNA repair and Tel1ATM-dependent signaling. These findings demonstrate that a minor heptad break in the RAD50 coiled coil suffices to impede MRE11 complex functions in human and yeast. Furthermore, these results emphasize the importance of the RAD50 coiled coil to regulate MRE11-dependent DNA end resection in humans.ISSN:2666-3864ISSN:2211-124

    Hematopoietic Stem Cell Transplantation Using Preimplantation Genetic Diagnosis And Human Leukocyte Antigen Typing For Human Leukocyte Antigen-Matched Sibling Donor: A Turkish Multicenter Study

    No full text
    Preimplantation genetic diagnosis involves the diagnosis of a genetic disorder in embryos obtained through in vitro fertilization, selection of healthy embryos, and transfer of the embryos to the mother's uterus. Preimplantation genetic diagnosis has been used not only to avoid the risk of having an affected child, but it also offers, using HLA matching, preselection of potential HLA-genoidentical healthy donor progeny for an affected sibling who requires bone marrow transplantation. Here, we share the hematopoietic stem cell transplantation results of 52 patients with different benign and malign hematological or metabolic diseases or immunodeficiencies whose donors were siblings born with this technique in Turkey since 2008. The median age of the patients' at the time of the transplantation was 8 years (range, 3 to 16 years) and the median age of the donors was 2 years (range,.5 to 6 years). The most common indication for HSCT was thalassemia major (42 of all patients, 80%). The stem cell source in all of the transplantations was bone marrow. In 37 of the transplantations, umbiliCal cord blood of the same donor was also used. In 50 of the 52 patients, full engraftment was achieved with a mean of 4.6 x 10(6) CD 34(+) cells per kg of recipient weight. Ninety-six percent of the patients have been cured through hematopoietic stem cell transplantation without any complication. Primary engraftment failure was seen in only 2 patients with thalassemia major. All of the donors and the patients are alive with good health status. Preimplantation genetic diagnosis with HLA matching offers a life-saving chance for patients who need transplantation but lack an HLA genoidentical donor. (C) 2017 American Society for Blood and Marrow Transplantation.WoSScopu
    corecore