133 research outputs found

    Species-specific responses to landscape features shaped genomic structure within Alaska galliformes

    Get PDF
    Aim: Connectivity is vital to the resiliency of populations to environmental change and stochastic events, especially for cold-adapted species as Arctic and alpine tundra habitats retract as the climate warms. We examined the influence of past and current landscapes on genomic connectivity in cold-adapted galliformes as a critical first step to assess the vulnerability of Alaska ptarmigan and grouse to environmental change. We hypothesize that the mosaic of physical features and habitat within Alaska promoted the formation of genetic structure across species. Location: Alaska, United States of America. Taxa: Ptarmigan and Grouse (Galliformes: Tetraoninae). Methods: We collected double digest restriction-site- associated DNA sequence data from six ptarmigan and grouse species (N = 13–145/ species) sampled across multiple ecosystems up to ~10 degrees of latitude. Spatial genomic structure was analysed using methods that reflect different temporal scales: (1) principal components analysis to identify major trends in the distribution of genomic variation; (2) maximum likelihood clustering analyses to test for the presence of multiple genomic groupings; (3) shared co-ancestry analyses to assess contemporary relationships and (4) effective migration surfaces to identify regions that deviate from a null model of isolation by distance. Results: Levels of genomic structure varied across species (ΦST =0.009–0.042). Three general patterns of structure emerged: (1) east-west partition located near the Yukon-Tanana uplands; (2) north-south split coinciding with the Alaska Range and (3) northern group near the Brooks Range. Species-specific patterns were observed; not all landscape features were barriers to gene flow for all ptarmigan and grouse and temporal contrasts were detected at the Brooks Range. Main conclusions: Within Alaska galliformes, patterns of genomic structure coincide with physiographic features and highlight the importance of physical and ecological barriers in shaping how genomic diversity is arrayed across the landscape. Lack of concordance in spatial patterns indicates that species behaviour and habitat affinities play key roles in driving the contrasting patterns of genomic structure

    Phylogenomics reveals ancient and contemporary gene flow contributing to the evolutionary history of sea ducks (Tribe Mergini)

    Get PDF
    Insight into complex evolutionary histories continues to build through broad comparative phylogenomic and population genomic studies. In particular, there is a need to understand the extent and scale that gene flow contributes to standing genomic diversity and the role introgression has played in evolutionary processes such as hybrid speciation. Here, we investigate the evolutionary history of the Mergini tribe (sea ducks) by coupling multi-species comparisons with phylogenomic analyses of thousands of nuclear ddRAD-seq loci, including Z-sex chromosome and autosomal linked loci, and the mitogenome assayed across all extant sea duck species in North America. All sea duck species are strongly structured across all sampled marker types (pair-wise species ΦST \u3e 0.2), with clear genetic assignments of individuals to their respective species, and phylogenetic relationships recapitulate known relationships. Despite strong species integrity, we identify at least 18 putative hybrids; with all but one being late generational backcrosses. Most interesting, we provide the first evidence that an ancestral gene flow event between long-tailed ducks (Clangula hyemalis) and true Eiders (Somateria spp.) not only moved genetic material into the former species, but likely generated a novel species — the Steller’s eider (Polysticta stelleri) — via hybrid speciation. Despite generally low contemporary levels of gene flow, we conclude that hybridization has and continues to be an important process that shifts novel genetic variation between species within the tribe Mergini. Finally, we outline methods that permit researchers to contrast genomic patterns of contemporary versus ancestral gene flow when attempting to reconstruct potentially complex evolutionary histories

    Population structure and plumage polymorphism: The intraspecific evolutionary relationships of a polymorphic raptor, Buteo jamaicensis harlani

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phenotypic and molecular genetic data often provide conflicting patterns of intraspecific relationships confounding phylogenetic inference, particularly among birds where a variety of environmental factors may influence plumage characters. Among diurnal raptors, the taxonomic relationship of <it>Buteo jamaicensis harlani </it>to other <it>B. jamaicensis </it>subspecies has been long debated because of the polytypic nature of the plumage characteristics used in subspecies or species designations.</p> <p>Results</p> <p>To address the evolutionary relationships within this group, we used data from 17 nuclear microsatellite loci, 430 base pairs of the mitochondrial control region, and 829 base pairs of the melanocortin 1 receptor (<it>Mc1r</it>) to investigate molecular genetic differentiation among three <it>B. jamaicensis </it>subspecies (<it>B. j. borealis</it>, <it>B. j. calurus</it>, <it>B. j. harlani</it>). Bayesian clustering analyses of nuclear microsatellite loci showed no significant differences between <it>B. j. harlani </it>and <it>B. j. borealis</it>. Differences observed between <it>B. j. harlani </it>and <it>B. j. borealis </it>in mitochondrial and microsatellite data were equivalent to those found between morphologically similar subspecies, <it>B. j. borealis </it>and <it>B. j. calurus</it>, and estimates of migration rates among all three subspecies were high. No consistent differences were observed in <it>Mc1r </it>data between <it>B. j. harlani </it>and other <it>B. jamaicensis </it>subspecies or between light and dark color morphs within <it>B. j. calurus</it>, suggesting that <it>Mc1r </it>does not play a significant role in <it>B. jamaicensis </it>melanism.</p> <p>Conclusions</p> <p>These data suggest recent interbreeding and gene flow between <it>B. j. harlani </it>and the other <it>B. jamaicensis </it>subspecies examined, providing no support for the historical designation of <it>B. j. harlani </it>as a distinct species.</p

    Evidence that pairing with genetically similar mates is maladaptive in a monogamous bird

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evidence of multiple genetic criteria of mate choice is accumulating in numerous taxa. In many species, females have been shown to pair with genetically dissimilar mates or with extra-pair partners that are more genetically compatible than their social mates, thereby increasing their offsprings' heterozygosity which often correlates with offspring fitness. While most studies have focused on genetically promiscuous species, few studies have addressed genetically monogamous species, in which mate choice tends to be mutual.</p> <p>Results</p> <p>Here, we used microsatellite markers to assess individual global heterozygosity and genetic similarity of pairs in a socially and genetically monogamous seabird, the black-legged kittiwake <it>Rissa tridactyla</it>. We found that pairs were more genetically dissimilar than expected by chance. We also identified fitness costs of breeding with genetically similar partners: (i) genetic similarity of pairs was negatively correlated with the number of chicks hatched, and (ii) offspring heterozygosity was positively correlated with growth rate and survival.</p> <p>Conclusion</p> <p>These findings provide evidence that breeders in a genetically monogamous species may avoid the fitness costs of reproducing with a genetically similar mate. In such species that lack the opportunity to obtain extra-pair fertilizations, mate choice may therefore be under high selective pressure.</p

    POPULATION GENETIC STRUCTURE OF MOOSE (ALCES ALCES) OF SOUTH-CENTRAL ALASKA

    Get PDF
    The location of a population can influence its genetic structure and diversity by impacting the degree of isolation and connectivity to other populations. Populations at range margins are often thought to have less genetic variation and increased genetic structure, and a reduction in genetic diversity can have negative impacts on the health of a population. We explored the genetic diversity and connectivity between 3 peripheral populations of moose (Alces alces) with differing potential for connectivity to other areas within interior Alaska. Populations on the Kenai Peninsula and from the Anchorage region were found to be significantly differentiated (FST = 0.071, P &lt; 0.0001) with lower levels of genetic diversity observed within the Kenai population. Bayesian analyses employing assignment methodologies uncovered little evidence of contemporary gene flow between Anchorage and Kenai, suggesting regional isolation. Although gene flow outside the peninsula is restricted, high levels of gene flow were detected within the Kenai that is explained by male-biased dispersal. Furthermore, gene flow estimates differed across time scales on the Kenai Peninsula which may have been influenced by demographic fluctuations correlated, at least in part, with habitat change.

    The Use of Genetics for the Management of a Recovering Population: Temporal Assessment of Migratory Peregrine Falcons in North America

    Get PDF
    Background: Our ability to monitor populations or species that were once threatened or endangered and in the process of recovery is enhanced by using genetic methods to assess overall population stability and size over time. This can be accomplished most directly by obtaining genetic measures from temporally-spaced samples that reflect the overall stability of the population as given by changes in genetic diversity levels (allelic richness and heterozygosity), degree of population differentiation (FST and DEST), and effective population size (Ne). The primary goal of any recovery effort is to produce a longterm self-sustaining population, and these genetic measures provide a metric by which we can gauge our progress and help make important management decisions. Methodology/Principal Findings: The peregrine falcon in North America (Falco peregrinus tundrius and anatum) was delisted in 1994 and 1999, respectively, and its abundance will be monitored by the species Recovery Team every three years until 2015. Although the United States Fish and Wildlife Service makes a distinction between tundrius and anatum subspecies, our genetic results based on eleven microsatellite loci suggest limited differentiation that can be attributed to an isolation by distance relationship and warrant no delineation of these two subspecies in its northern latitudinal distribution from Alaska through Canada into Greenland. Using temporal samples collected at Padre Island, Texas during migration (seven temporal time periods between 1985–2007), no significant differences in genetic diversity or significant population differentiation in allele frequencies between time periods were observed and were indistinguishable from those obtained from tundrius/anatum breeding locations throughout their northern distribution. Estimates of harmonic mean Ne were variable and imprecise, but always greater than 500 when employing multiple temporal genetic methods. Conclusions/Significance: These results, including those from simulations to assess the power of each method to estimate Ne, suggest a stable or growing population, which is consistent with ongoing field-based monitoring surveys. Therefore, historic and continuing efforts to prevent the extinction of the peregrine falcon in North America appear successful with no indication of recent decline, at least from the northern latitude range-wide perspective. The results also further highlight the importance of archiving samples and their use for continual assessment of population recovery and long-term viability

    Ancient bears provide insights into Pleistocene ice age refugia in Southeast Alaska

    Get PDF
    During the Late Pleistocene, major parts of North America were periodically covered by ice sheets. However, there are still questions about whether ice-free refugia were present in the Alexander Archipelago along the Southeast (SE) Alaska coast during the last glacial maximum (LGM). Numerous subfossils have been recovered from caves in SE Alaska, including American black (Ursus americanus) and brown (U. arctos) bears, which today are found in the Alexander Archipelago but are genetically distinct from mainland bear populations. Hence, these bear species offer an ideal system to investigate long-term occupation, potential refugial survival and lineage turnover. Here, we present genetic analyses based on 99 new complete mitochondrial genomes from ancient and modern brown and black bears spanning the last ~45,000 years. Black bears form two SE Alaskan subclades, one preglacial and another postglacial, that diverged \u3e100,000 years ago. All postglacial ancient brown bears are closely related to modern brown bears in the archipelago, while a single preglacial brown bear is found in a distantly related clade. A hiatus in the bear subfossil record around the LGM and the deep split of their pre-and postglacial subclades fail to support a hypothesis of continuous occupancy in SE Alaska throughout the LGM for either species. Our results are consistent with an absence of refugia along the SE Alaska coast, but indicate that vegetation quickly expanded after deglaciation, allowing bears to recolonize the area after a short-lived LGM peak

    Insights into bear evolution from a Pleistocene polar bear genome

    Get PDF
    The polar bear (Ursus maritimus) has become a symbol of the threat to biodiversity from climate change. Understanding polar bear evolutionary history may provide insights into apex carnivore responses and prospects during periods of extreme environmental perturbations. In recent years, genomic studies have examined bear speciation and population history, including evidence for ancient admixture between polar bears and brown bears (Ursus arctos). Here, we extend our earlier studies of a 130,000- to 115,000-y-old polar bear from the Svalbard Archipelago using a 10x coverage genome sequence and 10 new genomes of polar and brown bears from contemporary zones of overlap in northern Alaska. We demonstrate a dramatic decline in effective population size for this ancient polar bear's lineage, followed by a modest increase just before its demise. A slightly higher genetic diversity in the ancient polar bear suggests a severe genetic erosion over a prolonged bottleneck in modern polar bears. Statistical fitting of data to alternative admixture graph scenarios favors at least one ancient introgression event from brown bears into the ancestor of polar bears, possibly dating back over 150,000 y. Gene flow was likely bidirectional, but allelic transfer from brown into polar bear is the strongest detected signal, which contrasts with other published work. These findings may have implications for our understanding of climate change impacts: Polar bears, a specialist Arctic lineage, may not only have undergone severe genetic bottlenecks but also been the recipient of generalist, boreal genetic variants from brown bears during critical phases of Northern Hemisphere glacial oscillations.Peer reviewe

    The Alaska Arctic Vegetation Archive (AVA-AK)

    Get PDF
    The Alaska Arctic Vegetation Archive (AVA-AK, GIVD-ID: NA-US-014) is a free, publically available database archive of vegetation-plot data from the Arctic tundra region of northern Alaska. The archive currently contains 24 datasets with 3,026 non-overlapping plots. Of these, 74% have geolocation data with 25-m or better precision. Species cover data and header data are stored in a Turboveg database. A standardized Pan Arctic Species List provides a consistent nomenclature for vascular plants, bryophytes, and lichens in the archive. A web-based online Alaska Arctic Geoecological Atlas (AGA-AK) allows viewing and downloading the species data in a variety of formats, and provides access to a wide variety of ancillary data. We conducted a preliminary cluster analysis of the first 16 datasets (1,613 plots) to examine how the spectrum of derived clusters is related to the suite of datasets, habitat types, and environmental gradients. Here, we present the contents of the archive, assess its strengths and weaknesses, and provide three supplementary files that include the data dictionary, a list of habitat types, an overview of the datasets, and details of the cluster analysis
    corecore