6,057 research outputs found
Discrimination of Faces, Sex, and Relationships by Capuchin Monkeys
Whether attending a business function or moving to a new neighborhood, the ability to recognize, remember, and garner information about the social relationships of other individuals is critical for human survival. But to what degree is this unique to humans? Nonhuman primates provide us with the opportunity to study the evolutionary history and function of human socio-cognitive skills within a comparative framework. I tested capuchin monkeys on three computerized tasks that evaluated their ability to discriminate the faces, sexual identities and dominance relationships of conspecifics living in their own social group, a neighboring social group or completely unfamiliar individuals. This paradigm allowed for testing the effect of familiarity and parsed underlying mechanisms of these socio-cognitive skills, both of which help to elucidate how social knowledge emerges from the foundations of perception
Performance on a Face Discrimination Task by Orangutans Reflects a Possible Interaction between Familiarity and Novelty
Faces provide humans with information on the age, sex, individual identity, and emotional state of others. Although comparatively less is known about nonhuman primates’ face processing abilities, several gregarious group living species are able to discriminate conspecific faces. Here, we tested a less gregarious species, orangutans, to determine if they exhibit similar skills. Using a matching-to-sample paradigm, orangutans matched two identical portraits of unfamiliar orangutans. Next, subjects matched two different photographs of the same individual across viewpoints. During testing, subjects successfully transferred to novel photographs of familiar, but not unfamiliar, individuals with their first exposure to these stimuli. However, performance was not maintained throughout continued exposure to these stimuli, suggesting a possible novelty effect. Interestingly, orangutans performed significantly above chance when individuating familiar males, but not females. Further examination is needed to understand social organization and other social factors which were important in the evolution of face-processing
Creating exotic condensates via quantum-phase-revival dynamics in engineered lattice potentials
In the field of ultracold atoms in optical lattices a plethora of phenomena
governed by the hopping energy and the interaction energy have been
studied in recent years. However, the trapping potential typically present in
these systems sets another energy scale and the effects of the corresponding
time scale on the quantum dynamics have rarely been considered. Here we study
the quantum collapse and revival of a lattice Bose-Einstein condensate (BEC) in
an arbitrary spatial potential, focusing on the special case of harmonic
confinement. Analyzing the time evolution of the single-particle density
matrix, we show that the physics arising at the (temporally) recurrent quantum
phase revivals is essentially captured by an effective single particle theory.
This opens the possibility to prepare exotic non-equilibrium condensate states
with a large degree of freedom by engineering the underlying spatial lattice
potential.Comment: 9 pages, 6 figure
A causal look into the quantum Talbot effect
A well-known phenomenon in both optics and quantum mechanics is the so-called
Talbot effect. This near field interference effect arises when infinitely
periodic diffracting structures or gratings are illuminated by highly coherent
light or particle beams. Typical diffraction patterns known as quantum carpets
are then observed. Here the authors provide an insightful picture of this
nonlocal phenomenon as well as its classical limit in terms of Bohmian
mechanics, also showing the causal reasons and conditions that explain its
appearance. As an illustration, theoretical results obtained from diffraction
of thermal He atoms by both N-slit arrays and weak corrugated surfaces are
analyzed and discussed. Moreover, the authors also explain in terms of what
they call the Talbot-Beeby effect how realistic interaction potentials induce
shifts and distortions in the corresponding quantum carpets.Comment: 12 pages, 6 figure
Identification of Cytotoxic Flavor Chemicals in Top-Selling Electronic Cigarette Refill Fluids.
We identified the most popular electronic cigarette (EC) refill fluids using an Internet survey and local and online sales information, quantified their flavor chemicals, and evaluated cytotoxicities of the fluids and flavor chemicals. "Berries/Fruits/Citrus" was the most popular EC refill fluid flavor category. Twenty popular EC refill fluids were purchased from local shops, and the ingredient flavor chemicals were identified and quantified by gas chromatography-mass spectrometry. Total flavor chemical concentrations ranged from 0.6 to 27.9 mg/ml, and in 95% of the fluids, total flavor concentration was greater than nicotine concentration. The 20 most popular refill fluids contained 99 quantifiable flavor chemicals; each refill fluid contained 22 to 47 flavor chemicals, most being esters. Some chemicals were found frequently, and several were present in most products. At a 1% concentration, 80% of the refill fluids were cytotoxic in the MTT assay. Six pure standards of the flavor chemicals found at the highest concentrations in the two most cytotoxic refill fluids were effective in the MTT assay, and ethyl maltol, which was in over 50% of the products, was the most cytotoxic. These data show that the cytotoxicity of some popular refill fluids can be attributed to their high concentrations of flavor chemicals
Excited states and energy transfer among DNA bases in double helices
International audienceThe study of excited states and energy transfer in DNA double helices has recently gained new interest connected to the development of computational techniques and that of femtosecond spectroscopy. The present article points out contentious questions regarding the nature of the excited states and the occurrence of energy transfer and shows how they are currently approached. Using as example the polymer poly(dA)·poly(dT), composed of about 2000 adenine–thymine pairs, a model is proposed on the basis of time-resolved measurements (fluorescence decays, fluorescence anisotropy decays and fluorescence spectra, obtained with femtosecond resolution), associated to steady-state spectra. According to this qualitative model, excitation at 267 nm populates excited states that are delocalized over a few bases (excitons). Ultrafast internal conversion directs the excited state population to the lower part of the exciton band giving rise to fluorescence. Questions needing further investigations, both theoretical and experimental, are underlined with particular emphasis on delicate points related to the complexity and the plasticity of these systems
Electron interferometry with nano-gratings
We present an electron interferometer based on near-field diffraction from
two nanostructure gratings. Lau fringes are observed with an imaging detector,
and revivals in the fringe visibility occur as the separation between gratings
is increased from 0 to 3 mm. This verifies that electron beams diffracted by
nanostructures remain coherent after propagating farther than the Talbot length
= 1.2 mm, and hence is a proof of principle for the
function of a Talbot-Lau interferometer for electrons. Distorted fringes due to
a phase object demonstrates an application for this new type of electron
interferometer.Comment: 4 pgs, 6 figure
High concentrations of flavor chemicals are present in electronic cigarette refill fluids.
We characterized the flavor chemicals in a broad sample of commercially available electronic cigarette (EC) refill fluids that were purchased in four different countries. Flavor chemicals in 277 refill fluids were identified and quantified by gas chromatography-mass spectrometry, and two commonly used flavor chemicals were tested for cytotoxicity with the MTT assay using human lung fibroblasts and epithelial cells. About 85% of the refill fluids had total flavor concentrations >1 mg/ml, and 37% were >10 mg/ml (1% by weight). Of the 155 flavor chemicals identified in the 277 refill fluids, 50 were present at ≥1 mg/ml in at least one sample and 11 were ≥10 mg/ml in 54 of the refill fluids. Sixty-one% (170 out of 277) of the samples contained nicotine, and of these, 56% had a total flavor chemical/nicotine ratio >2. Four chemicals were present in 50% (menthol, triacetin, and cinnamaldehyde) to 80% (ethyl maltol) of the samples. Some products had concentrations of menthol ("Menthol Arctic") and ethyl maltol ("No. 64") that were 30 times (menthol) and 100 times (ethyl maltol) their cytotoxic concentration. One refill fluid contained cinnamaldehyde at ~34% (343 mg/ml), more than 100,000 times its cytotoxic level. High concentrations of some flavor chemicals in EC refill fluids are potentially harmful to users, and continued absence of any regulations regarding flavor chemicals in EC fluids will likely be detrimental to human health
Random sequential adsorption of shrinking or spreading particles
We present a model of one-dimensional irreversible adsorption in which
particles once adsorbed immediately shrink to a smaller size or expand to a
larger size. Exact solutions for the fill factor and the particle number
variance as a function of the size change are obtained. Results are compared
with approximate analytical solutions.Comment: 9 pages, 8 figure
Structure of Weak Shock Waves in a Monatomic Gas
The profiles and thicknesses of normal shock waves in argon at Mach numbers of 1.335, 1.454, 1.576, and 1-713 were determined experimentally by means of a free-molecule probe whose equilibrium temperature is related by kinetic theory to the local flow properties and their gradients. Comparisons were made between the experimental shock profiles and the theoretical profiles calculated from the Navier-Stokes equations, the Grad 13-moment equations, and the Burnett equations. New, very accurate numerical integrations of the Burnett equations were obtained for this purpose with results quite different from those found by Zoller, to whom the solution of this problem is frequently attributed. The experimental shock profiles were predicted with approximately equal success by the Navier-Stokes and Burnett theories, while the 13-moment method was definitely less satisfactory. A surprising feature of the theoretical results is the relatively small difference in predictions between the Navier-Stokes and Burnett theories in the present range of shock strengths and the contrastingly large difference between predictions of Burnett and the 13-moment theories. It is concluded that the Navier-Stokes equations are correct for weak shocks and that within the present shock strength range the Burnett equations make no improvement which merits the trouble of solving them. For shocks of noticeably greater strength, say with a shock Mach number of more than 2.5, it remains fundamentally doubtful that any of these theories can be correct
- …