92 research outputs found

    Fundamental studies of the adhesion of explosives to textile and non-textile surfaces

    Get PDF
    This paper describes the use of atomic force microscopy (AFM) to investigate the interactions between explosives crystals and different surfaces. Crystals of TNT, PETN and RDX were mounted onto tipless AFM cantilevers and repeatedly brought into contact with a range of surfaces (n = 15), including textile and non-textile surfaces. The adhesion force during each contact was measured, and the results are presented in this work. The results suggest that explosives crystals display a higher adhesion to smoother, non-textile surfaces, particularly glass. This finding may be of use for forensic explosives investigators when deciding the best types of debris to target for explosives recovery

    Systematic review of studies examining transtibial prosthetic socket pressures with changes in device alignment

    Get PDF
    Suitable lower-limb prosthetic sockets must provide an adequate distribution of the pressures created from standing and ambulation. A systematic search for articles reporting socket pressure changes in response to device alignment perturbation was carried out, identifying 11 studies. These were then evaluated using the American Academy of Orthotists and Prosthetists guidelines for a state-of-the-science review. Each study used a design where participants acted as their own controls. Results were available for 52 individuals and 5 forms of alignment perturbation. Four studies were rated as having moderate internal and external validity, the remainder were considered to have low validity. Significant limitations in study design, reporting quality and in representation of results and the suitability of calculations of statistical significance were evident across articles. Despite the high inhomogeneity of study designs, moderate evidence supports repeatable changes in pressure distribution for specific induced changes in component alignment. However, there also appears to be a significant individual component to alignment responses. Future studies should aim to include greater detail in the presentation of results to better support later meta-analyses

    Raman Spectroscopy and Ab-Initio Model Calculations on Ionic Liquids:Invited Review

    Get PDF

    The psychosocial impact of prostate cancer screening for BRCA1 and BRCA2 carriers

    Get PDF
    Objectives: To report the long-term outcomes from a longitudinal psychosocial study that forms part of the ‘Identification of Men with a genetic predisposition to ProstAte Cancer: Targeted Screening in men at higher genetic risk and controls’ (IMPACT) study. The IMPACT study is a multi-national study of targeted prostate cancer (PrCa) screening in individuals with a known germline pathogenic variant (GPV) in either the BReast CAncer gene 1 (BRCA1) or the BReast CAncer gene 2 (BRCA2). Subjects and Methods: Participants enrolled in the IMPACT study were invited to complete a psychosocial questionnaire prior to each annual screening visit for a minimum of 5 years. The questionnaire included questions on sociodemographics and the following measures: Hospital Anxiety and Depression Scale, Impact of Event Scale, 36-item Short-Form Health Survey, Memorial Anxiety Scale for PrCa, Cancer Worry Scale, risk perception and knowledge. Results: A total of 760 participants completed questionnaires: 207 participants with GPV in BRCA1, 265 with GPV in BRCA2 and 288 controls (non-carriers from families with a known GPV). We found no evidence of clinically concerning levels of general or cancer-specific distress or poor health-related quality of life in the cohort as a whole. Individuals in the control group had significantly less worry about PrCa compared with the carriers; however, all mean scores were low and within reported general population norms, where available. BRCA2 carriers with previously high prostate-specific antigen (PSA) levels experience a small but significant increase in PrCa anxiety (P = 0.01) and PSA-specific anxiety (P < 0.001). Cancer risk perceptions reflected information provided during genetic counselling and participants had good levels of knowledge, although this declined over time. Conclusion: This is the first study to report the longitudinal psychosocial impact of a targeted PrCa screening programme for BRCA1 and BRCA2 carriers. The results reassure that an annual PSA-based screening programme does not have an adverse impact on psychosocial health or health-related quality of life in these higher-risk individuals. These results are important as more PrCa screening is targeted to higher-risk groups

    Increased throughput and ultra-high mass resolution in DESI FT-ICR MS imaging through new-generation external data acquisition system and advanced data processing approaches

    Get PDF
    Desorption electrospray ionisation-mass spectrometry imaging (DESI-MSI) is a powerful imaging technique for the analysis of complex surfaces. However, the often highly complex nature of biological samples is particularly challenging for MSI approaches, as options to appropriately address mass spectral complexity are limited. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) offers superior mass accuracy and mass resolving power, but its moderate throughput inhibits broader application. Here we demonstrate the dramatic gains in mass resolution and/or throughput of DESI-MSI on an FT-ICR MS by developing and implementing a sophisticated data acquisition and data processing pipeline. The presented pipeline integrates, for the first time, parallel ion accumulation and detection, post-processing absorption mode Fourier transform and pixel-by-pixel internal re-calibration. To achieve that, first, we developed and coupled an external high-performance data acquisition system to an FT-ICR MS instrument to record the time-domain signals (transients) in parallel with the instrument’s built-in electronics. The recorded transients were then processed by the in-house developed computationally-efficient data processing and data analysis software. Importantly, the described pipeline is shown to be applicable even to extremely large, up to 1 TB, imaging datasets. Overall, this approach provides improved analytical figures of merits such as: (i) enhanced mass resolution at no cost in experimental time; and (ii) up to 4-fold higher throughput while maintaining a constant mass resolution. Using this approach, we not only demonstrate the record 1 million mass resolution for lipid imaging from brain tissue, but explicitly demonstrate such mass resolution is required to resolve the complexity of the lipidome
    corecore