1,781 research outputs found

    The mobile Boolean model: an overview and further results

    Get PDF
    This paper offers an overview of the mobile Boolean stochastic geometric model which is a time-dependent version of the ordinary Boolean model in a Euclidean space of dimension dd. The main question asked is that of obtaining the law of the detection time of a fixed set. We give various ways of thinking about this which result into some general formulas. The formulas are solvable in some special cases, such the inertial and Brownian mobile Boolean models. In the latter case, we obtain some expressions for the distribution of the detection time of a ball, when the dimension dd is odd and asymptotics when dd is even. Finally, we pose some questions for future research.Comment: 19 page

    Pattern classification using a linear associative memory

    Get PDF
    Pattern classification is a very important image processing task. A typical pattern classification algorithm can be broken into two parts; first, the pattern features are extracted and, second, these features are compared with a stored set of reference features until a match is found. In the second part, usually one of the several clustering algorithms or similarity measures is applied. In this paper, a new application of linear associative memory (LAM) to pattern classification problems is introduced. Here, the clustering algorithms or similarity measures are replaced by a LAM matrix multiplication. With a LAM, the reference features need not be separately stored. Since the second part of most classification algorithms is similar, a LAM standardizes the many clustering algorithms and also allows for a standard digital hardware implementation. Computer simulations on regular textures using a feature extraction algorithm achieved a high percentage of successful classification. In addition, this classification is independent of topological transformations

    Convergence to the Tracy-Widom distribution for longest paths in a directed random graph

    Get PDF
    We consider a directed graph on the 2-dimensional integer lattice, placing a directed edge from vertex (i1,i2)(i_1,i_2) to (j1,j2)(j_1,j_2), whenever i1j1i_1 \le j_1, i2j2i_2 \le j_2, with probability pp, independently for each such pair of vertices. Let Ln,mL_{n,m} denote the maximum length of all paths contained in an n×mn \times m rectangle. We show that there is a positive exponent aa, such that, if m/na1m/n^a \to 1, as nn \to \infty, then a properly centered/rescaled version of Ln,mL_{n,m} converges weakly to the Tracy-Widom distribution. A generalization to graphs with non-constant probabilities is also discussed.Comment: 20 pages, 2 figure

    Stationary flows and uniqueness of invariant measures

    Get PDF
    In this short paper, we consider a quadruple (Ω,A˚,θ,μ)(\Omega, \AA, \theta, \mu),where A˚\AA is a σ\sigma-algebra of subsets of Ω\Omega, and θ\theta is a measurable bijection from Ω\Omega into itself that preserves the measure μ\mu. For each BA˚B \in \AA, we consider the measure μB\mu_B obtained by taking cycles (excursions) of iterates of θ\theta from BB. We then derive a relation for μB\mu_B that involves the forward and backward hitting times of BB by the trajectory (θnω,nZ)(\theta^n \omega, n \in \Z) at a point ωΩ\omega \in \Omega. Although classical in appearance, its use in obtaining uniqueness of invariant measures of various stochastic models seems to be new. We apply the concept to countable Markov chains and Harris processes

    A spin quantum bit with ferromagnetic contacts for circuit QED

    Full text link
    We theoretically propose a scheme for a spin quantum bit based on a double quantum dot contacted to ferromagnetic elements. Interface exchange effects enable an all electric manipulation of the spin and a switchable strong coupling to a superconducting coplanar waveguide cavity. Our setup does not rely on any specific band structure and can in principle be realized with many different types of nanoconductors. This allows to envision on-chip single spin manipulation and read-out using cavity QED techniques

    Limit theorems for a random directed slab graph

    Get PDF
    We consider a stochastic directed graph on the integers whereby a directed edge between ii and a larger integer jj exists with probability pjip_{j-i} depending solely on the distance between the two integers. Under broad conditions, we identify a regenerative structure that enables us to prove limit theorems for the maximal path length in a long chunk of the graph. The model is an extension of a special case of graphs studied by Foss and Konstantopoulos, Markov Process and Related Fields, 9, 413-468. We then consider a similar type of graph but on the `slab' Z×I\Z \times I, where II is a finite partially ordered set. We extend the techniques introduced in the in the first part of the paper to obtain a central limit theorem for the longest path. When II is linearly ordered, the limiting distribution can be seen to be that of the largest eigenvalue of a I×I|I| \times |I| random matrix in the Gaussian unitary ensemble (GUE).Comment: 26 pages, 3 figure

    A multilinear algebra proof of the Cauchy-Binet formula and a multilinear version of Parseval's identity

    Get PDF
    We give a short proof of the Cauchy-Binet determinantal formula using multilinear algebra by first generalizing it to an identity {\em not} involving determinants. By extending the formula to abstract Hilbert spaces we obtain, as a corollary, a generalization of the classical Parseval identity.Comment: 9 pages, 2 diagram
    corecore