14 research outputs found

    Open Access Antiviral activity of stachyflin on influenza A viruses of different hemagglutinin subtypes

    Get PDF
    Background: The hemagglutinin (HA) of influenza viruses is a possible target for antiviral drugs because of its key roles in the initiation of infection. Although it was found that a natural compound, Stachyflin, inhibited the growth of H1 and H2 but not H3 influenza viruses in MDCK cells, inhibitory activity of the compound has not been assessed against H4-H16 influenza viruses and the precise mechanism of inhibition has not been clarified. Methods: Inhibitory activity of Stachyflin against H4-H16 influenza viruses, as well as H1-H3 viruses was examined in MDCK cells. To identify factors responsible for the susceptibility of the viruses to this compound, Stachyflin-resistant viruses were selected in MDCK cells and used for computer docking simulation. Results: It was found that in addition to antiviral activity of Stachyflin against influenza viruses of H1 and H2 subtypes, it inhibited replication of viruses of H5 and H6 subtypes, as well as A(H1N1)pdm09 virus in MDCK cells. Stachyflin also inhibited the virus growth in the lungs of mice infected with A/WSN/1933 (H1N1) and A/chicken/ Ibaraki/1/2005 (H5N2). Substitution of amino acid residues was found on the HA2 subunit of Stachyflin-resistant viruses. Docking simulation indicated that D37, K51, T107, and K121 are responsible for construction of the cavity for the binding of the compound. In addition, 3-dimensional structure of the cavity of the HA of Stachyflin-susceptible virus strains was different from that of insusceptible virus strains. Conclusion: Antiviral activity of Stachyflin was found against A(H1N1)pdm09, H5, and H6 viruses, and identified a potential binding pocket for Stachyflin on the HA. The present results should provide us with useful information for the development of HA inhibitors with more effective and broader spectrum

    Prophylactic Treatment with Baloxavir Protects Mice from Lethal Infection with Influenza A and B Viruses

    No full text
    Influenza remains a worldwide health concern. Antiviral drugs are considered as one of the useful options for its prevention as a complementary measure to vaccination. Baloxavir acid selectively inhibits the cap-dependent endonuclease of influenza viruses and exhibits marked viral titre reduction in patients. Here, we describe the prophylactic potency of baloxavir acid against lethal infection with influenza A and B viruses in mice. BALB/c mice were subcutaneously administered once with baloxavir acid suspension, or orally administered once daily for 10 days with oseltamivir phosphate solution at human relevant doses. Next, the mice were intranasally inoculated with A/PR/8/34 (H1N1) or B/Hong Kong/5/72 strain at 24 to 96 h after the initial dosing. Prophylactic treatment with the antiviral drugs significantly reduced the lung viral titres and prolonged survival time. In particular, baloxavir acid showed a greater suppressive effect on lung viral titres compared to oseltamivir phosphate. In this model, baloxavir acid maintained significant prophylactic effects against influenza A and B virus infections when the plasma concentration at the time of infection was at least 0.88 and 3.58 ng/mL, respectively. The significant prophylactic efficacy observed in our mouse model suggests the potential utility of baloxavir marboxil for prophylaxis against influenza in humans

    Baloxavir marboxil, a novel cap-dependent endonuclease inhibitor potently suppresses influenza virus replication and represents therapeutic effects in both immunocompetent and immunocompromised mouse models.

    No full text
    Baloxavir marboxil (BXM) is an orally available small molecule inhibitor of cap-dependent endonuclease (CEN), an essential enzyme in the initiation of mRNA synthesis of influenza viruses. In the present study, we evaluated the efficacy of BXM against influenza virus infection in mouse models. Single-day oral administration of BXM completely prevented mortality due to infection with influenza A and B virus in mice. Moreover, 5-day repeated administration of BXM was more effective for reducing mortality and body weight loss in mice infected with influenza A virus than oseltamivir phosphate (OSP), even when the treatment was delayed up to 96 hours post infection (p.i.). Notably, administration of BXM, starting at 72 hours p.i. led to significant decrease in virus titers of >2-log10 reduction compared to the vehicle control within 24 hours after administration. Virus reduction in the lung was significantly greater than that observed with OSP. In addition, profound and sustained reduction of virus titer was observed in the immunocompromised mouse model without emergence of variants possessing treatment-emergent amino acid substitutions in the target protein. In our immunocompetent and immunocompromised mouse models, delayed treatment with BXM resulted in rapid and potent reduction in infectious virus titer and prevention of signs of influenza infection, suggesting that BXM could extend the therapeutic window for patients with influenza virus infection regardless of the host immune status

    Baloxavir marboxil for prophylaxis against influenza in household contacts

    No full text
    BACKGROUND Baloxavir marboxil (baloxavir) is a polymerase acidic protein (PA) endonuclease inhibitor with clinical efficacy in the treatment of uncomplicated influenza, including in outpatients at increased risk for complications. The postexposure prophylactic efficacy of baloxavir in the household setting is unclear. METHODS We conducted a multicenter, double-blind, randomized, placebo-controlled trial to evaluate the postexposure prophylactic efficacy of baloxavir in household contacts of index patients with confirmed influenza during the 2018–2019 season in Japan. The participants were assigned in a 1:1 ratio to receive either a single dose of baloxavir or placebo. The primary end point was clinical influenza, as confirmed by reverse-transcriptase–polymerase-chain-reaction testing, over a period of 10 days. The occurrence of baloxavir-selected PA substitutions associated with reduced susceptibility was assessed. RESULTS A total of 752 household contacts of 545 index patients were randomly assigned to receive baloxavir or placebo. Among the index patients, 95.6% had influenza A virus infection, 73.6% were younger than 12 years of age, and 52.7% received baloxavir. Among the participants who could be evaluated (374 in the baloxavir group and 375 in the placebo group), the percentage in whom clinical influenza developed was significantly lower in the baloxavir group than in the placebo group (1.9% vs. 13.6%) (adjusted risk ratio, 0.14; 95% confidence interval [CI], 0.06 to 0.30; P<0.001). Baloxavir was effective in high-risk, pediatric, and unvaccinated subgroups of participants. The risk of influenza infection, regardless of symptoms, was lower with baloxavir than with placebo (adjusted risk ratio, 0.43; 95% CI, 0.32 to 0.58). The incidence of adverse events was similar in the two groups (22.2% in the baloxavir group and 20.5% in the placebo group). In the baloxavir group, the viral PA substitutions I38T/M or E23K were detected in 10 (2.7%) and 5 (1.3%) participants, respectively. No transmission of these variants from baloxavir-treated index patients to participants in the placebo group was detected; however, several instances of transmission to participants in the baloxavir group could not be ruled out. CONCLUSIONS Single-dose baloxavir showed significant postexposure prophylactic efficacy in preventing influenza in household contacts of patients with influen

    Characterization of the In Vitro and In Vivo Efficacy of Baloxavir Marboxil against H5 Highly Pathogenic Avian Influenza Virus Infection

    No full text
    Human infections caused by the H5 highly pathogenic avian influenza virus (HPAIV) sporadically threaten public health. The susceptibility of HPAIVs to baloxavir acid (BXA), a new class of inhibitors for the influenza virus cap-dependent endonuclease, has been confirmed in vitro, but it has not yet been fully characterized. Here, the efficacy of BXA against HPAIVs, including recent H5N8 variants, was assessed in vitro. The antiviral efficacy of baloxavir marboxil (BXM) in H5N1 virus-infected mice was also investigated. BXA exhibited similar in vitro activities against H5N1, H5N6, and H5N8 variants tested in comparison with seasonal and other zoonotic strains. Compared with oseltamivir phosphate (OSP), BXM monotherapy in mice infected with the H5N1 HPAIV clinical isolate, the A/Hong Kong/483/1997 strain, also caused a significant reduction in viral titers in the lungs, brains, and kidneys, thereby preventing acute lung inflammation and reducing mortality. Furthermore, compared with BXM or OSP monotherapy, combination treatments with BXM and OSP using a 48-h delayed treatment model showed a more potent effect on viral replication in the organs, accompanied by improved survival. In conclusion, BXM has a potent antiviral efficacy against H5 HPAIV infections

    Identification of cap-dependent endonuclease inhibitors with broad-spectrum activity against bunyaviruses

    Get PDF
    Viral hemorrhagic fevers caused by members of the order Bunyavirales comprise endemic and emerging human infections that are significant public health concerns. Despite the disease severity, there are few therapeutic options available, and therefore effective antiviral drugs are urgently needed to reduce disease burdens. Bunyaviruses, like influenza viruses (IFVs), possess a cap-dependent endonuclease (CEN) that mediates the critical cap-snatching step of viral RNA transcription. We screened compounds from our CEN inhibitor (CENi) library and identified specific structural compounds that are 100 to 1,000 times more active in vitro than ribavirin against bunyaviruses, including Lassa virus, lymphocytic choriomeningitis virus (LCMV), and Junin virus. To investigate their inhibitory mechanism of action, drug-resistant viruses were selected in culture. Whole-genome sequencing revealed that amino acid substitutions in the CEN region of drug-resistant viruses were located in similar positions as those of the CEN α3-helix loop of IFVs derived under drug selection. Thus, our studies suggest that CENi compounds inhibit both bunyavirus and IFV replication in a mechanistically similar manner. Structural analysis revealed that the side chain of the carboxyl group at the seventh position of the main structure of the compound was essential for the high antiviral activity against bunyaviruses. In LCMV-infected mice, the compounds significantly decreased blood viral load, suppressed symptoms such as thrombocytopenia and hepatic dysfunction, and improved survival rates. These data suggest a potential broad-spectrum clinical utility of CENis for the treatment of both severe influenza and hemorrhagic diseases caused by bunyaviruses
    corecore