49 research outputs found

    3,3′,4,4′,5-Pentachlorobiphenyl Inhibits Drug Efflux Through P-Glycoprotein in KB-3 Cells Expressing Mutant Human P-Glycoprotein

    Get PDF
    The effects on the drug efflux of 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126), the most toxic of all coplanar polychlorinated biphenyls (Co-PCBs), were examined in KB-3 cells expressing human wild-type and mutant P-glycoprotein in which the 61st amino acid was substituted for serine or phenylalanine (KB3-Phe(61)). In the cells expressing P-glycoproteins, accumulations of vinblastine and colchicine decreased form 85% to 92% and from 62% to 91%, respectively, and the drug tolerances for these chemicals were increased. In KB3-Phe(61), the decreases in drug accumulation were inhibited by adding PCB-126 in a way similar to that with cyclosporine A: by adding 1 μM PCB-126, the accumulations of vinblastine and colchicine increased up to 3.3- and 2.3-fold, respectively. It is suggested that PCB-126 decreased the drug efflux by inhibiting the P-glycoprotein in KB3-Phe(61). Since there were various P-glycoproteins and many congeners of Co-PCBs, this inhibition has to be considered a new cause of the toxic effects of Co-PCBs

    SUMOylation of Paraflagellar Rod Protein, PFR1, and Its Stage-Specific Localization in Trypanosoma cruzi

    Get PDF
    BACKGROUND: The flagellate protozoan parasite, Trypanosoma cruzi, is a causative agent of Chagas disease that is transmitted by reduviid bugs to humans. The parasite exists in multiple morphological forms in both vector and host, and cell differentiation in T. cruzi is tightly associated with stage-specific protein synthesis and degradation. However, the specific molecular mechanisms responsible for this coordinated cell differentiation are unclear. METHODOLOGY/PRINCIPAL FINDINGS: The SUMO conjugation system plays an important role in specific protein expression. In T. cruzi, a subset of SUMOlylated protein candidates and the nuclear localization of SUMO have been shown. Here, we examined the biological roles of SUMO in T. cruzi. Site-directed mutagenesis analysis of SUMO consensus motifs within T. cruzi SUMO using a bacterial SUMOylation system revealed that T. cruzi SUMO can polymerize. Indirect fluorescence analysis using T. cruzi SUMO-specific antibody showed the extra-nuclear localization of SUMO on the flagellum of epimastigote and metacyclic and bloodstream trypomastigote stages. In the short-flagellate intracellular amastigote, an extra-nuclear distribution of SUMO is associated with basement of the flagellum and becomes distributed along the flagellum as amastigote transforms into trypomastigote. We examined the flagellar target protein of SUMO and show that a paraflagellar rod protein, PFR1, is SUMOylated. CONCLUSIONS: These findings indicate that SUMOylation is associated with flagellar homeostasis throughout the parasite life cycle, which may play an important role in differentiation of T. cruzi

    Reduction in Plasmodium falciparum Pfk13 and pfg377 allele diversity through time in southern Vietnam

    Get PDF
    Background: Plasmodium falciparum has acquired resistance to artemisinin in Southeast Asia, with mutations in the P. falciparum Kelch-13 (Pfk13) gene associated with the resistance phenotype. The widespread use of Artemisinin-based combination therapy (ACT)s in Southeast Asia has led to the selection and spread of parasites carrying mutations in Pfk13. We characterised the allele diversity of Pfk13 and pfg377, an artemisinin-resistance neutral polymorphic gene, in parasite DNA extracted human blood from in southern Vietnam in 2003, 2012, 2015 and 2018.Method: This study was conducted in Bu Gia Map commune, Binh Phuoc province, Vietnam, from May 2018 to January 2019. Twenty-four samples from 2018 to 2019, 30 from 2003, 24 from 2012 and 32 from 2015 were analysed. Malaria-infected human blood was collected by finger-prick and used for molecular analysis. A nested-PCR targeting the small subunit ribosomal RNA gene was used for Plasmodium species identification, followed by amplification and nucleotide sequencing of Pfk13 and region 3 of pfg377. Archived blood samples collected in the same region in 2012 and 2015 were also analysed as above for comparison.Results: The genetic diversity of Pfk13 and pfg377 was lower in 2018–2019 compared to 2012 and 2015. The number of distinct Pfk13 mutants decreased from three in 2012 and 2015, P553L, V568G and C580Y, to one, C580Y in 2018–2019. In 2018–2019, the frequency of C580Y mutant strains was 71% (17/24 isolates). All samples were wild type in 2003. In 2012 and 2015, there were single-strain infections as well as co-infections with two mutant strains or with mutant and wild strains, whereas there were no co-infections in 2018. pfg377 allele diversity decreased from five alleles in 2012 to two alleles in 2018–2019.Conclusion: The genetic diversity of P. falciparum was reduced at the two genetic loci surveyed in this study, Pfk13 and pfg377. In the case of the former gene, we observed an increase in the prevalence of parasites carrying the C580Y gene, known to confer reduced susceptibility to ACTs. The reduction in the diversity of pfg377 may be linked to the clonal expansion of parasite strains carrying the C580Y mutation, leading to an overall reduction in parasite genetic diversity across the population

    Induction of liver-resident memory T cells and protection at liver-stage malaria by mRNA-containing lipid nanoparticles

    Get PDF
    Recent studies have suggested that CD8+ liver-resident memory T (TRM) cells are crucial in the protection against liver-stage malaria. We used liver-directed mRNA-containing lipid nanoparticles (mRNA-LNPs) to induce liver TRM cells in a murine model. Single-dose intravenous injections of ovalbumin mRNA-LNPs effectively induced antigen-specific cytotoxic T lymphocytes in a dose-dependent manner in the liver on day 7. TRM cells (CD8+ CD44hi CD62Llo CD69+ KLRG1-) were induced 5 weeks after immunization. To examine the protective efficacy, mice were intramuscularly immunized with two doses of circumsporozoite protein mRNA-LNPs at 3-week intervals and challenged with sporozoites of Plasmodium berghei ANKA. Sterile immunity was observed in some of the mice, and the other mice showed a delay in blood-stage development when compared with the control mice. mRNA-LNPs therefore induce memory CD8+ T cells that can protect against sporozoites during liver-stage malaria and may provide a basis for vaccines against the disease

    Replication of Plasmodium in reticulocytes can occur without hemozoin formation, resulting in chloroquine resistance

    Get PDF
    Most studies on malaria-parasite digestion of hemoglobin (Hb) have been performed using P. falciparum maintained in mature erythrocytes, in vitro. In this study, we examine Plasmodium Hb degradation in vivo in mice, using the parasite P. berghei, and show that it is possible to create mutant parasites lacking enzymes involved in the initial steps of Hb proteolysis. These mutants only complete development in reticulocytes and mature into both schizonts and gametocytes. Hb degradation is severely impaired and large amounts of undigested Hb remains in the reticulocyte cytoplasm and in vesicles in the parasite. The mutants produce little or no hemozoin (Hz), the detoxification by-product of Hb degradation. Further, they are resistant to chloroquine, an antimalarial drug that interferes with Hz formation, but their sensitivity to artesunate, also thought to be dependent on Hb degradation, is retained. Survival in reticulocytes with reduced or absent Hb digestion may imply a novel mechanism of drug resistance. These findings have implications for drug development against human-malaria parasites, such as P. vivax and P. ovale, which develop inside reticulocytes

    A Novel ‘Gene Insertion/Marker Out’ (GIMO) Method for Transgene Expression and Gene Complementation in Rodent Malaria Parasites

    Get PDF
    Research on the biology of malaria parasites has greatly benefited from the application of reverse genetic technologies, in particular through the analysis of gene deletion mutants and studies on transgenic parasites that express heterologous or mutated proteins. However, transfection in Plasmodium is limited by the paucity of drug-selectable markers that hampers subsequent genetic modification of the same mutant. We report the development of a novel ‘gene insertion/marker out’ (GIMO) method for two rodent malaria parasites, which uses negative selection to rapidly generate transgenic mutants ready for subsequent modifications. We have created reference mother lines for both P. berghei ANKA and P. yoelii 17XNL that serve as recipient parasites for GIMO-transfection. Compared to existing protocols GIMO-transfection greatly simplifies and speeds up the generation of mutants expressing heterologous proteins, free of drug-resistance genes, and requires far fewer laboratory animals. In addition we demonstrate that GIMO-transfection is also a simple and fast method for genetic complementation of mutants with a gene deletion or mutation. The implementation of GIMO-transfection procedures should greatly enhance Plasmodium reverse-genetic research

    Co-localization of SUMO and PFR1 during developmental stages of <i>T. cruzi</i>.

    No full text
    <p>Immunofluorescence analysis of epimastigotes (Epi, a–e, and a parasite on the left in f–j), metacyclic trypomastigotes (MC; a parasite on the right in f–j), amastigotes (Ama; k–q), and amastigotes transforming to trypomastigotes (T-Ama; r–x), using anti-<i>T. cruzi</i> SUMO (TcSUMO, green) and anti-PFR1 (TcPFR1, red) antibodies. The nucleus and kinetoplast were counterstained with Hoechst 33342 (blue). DIC, differential interference contrast images; Merge, merged images. Panels p, q, w, and x correspond to the magnified image of the inset in panel i, o, s, and v, respectively. Scale bar = 10 µm.</p
    corecore