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Induction of liver-resident
memory T cells and protection
at liver-stage malaria by mRNA-
containing lipid nanoparticles
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Recent studies have suggested that CD8+ liver-resident memory T (TRM) cells are

crucial in the protection against liver-stage malaria. We used liver-directed

mRNA-containing lipid nanoparticles (mRNA-LNPs) to induce liver TRM cells in

a murine model. Single-dose intravenous injections of ovalbumin mRNA-LNPs

effectively induced antigen-specific cytotoxic T lymphocytes in a dose-

dependent manner in the liver on day 7. TRM cells (CD8+ CD44hi CD62Llo

CD69+ KLRG1-) were induced 5 weeks after immunization. To examine the

protective efficacy, mice were intramuscularly immunized with two doses of

circumsporozoite protein mRNA-LNPs at 3-week intervals and challenged with

sporozoites of Plasmodium berghei ANKA. Sterile immunity was observed in

some of the mice, and the other mice showed a delay in blood-stage

development when compared with the control mice. mRNA-LNPs therefore

induce memory CD8+ T cells that can protect against sporozoites during liver-

stage malaria and may provide a basis for vaccines against the disease.
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1 Introduction

Malaria is a serious life-threatening infectious disease. In 2020,

the World Health Organization (WHO) estimated that there were

241 million cases and 627,000 deaths caused by malaria worldwide

(1). Immediately after entering the human body through a

mosquito bite, Plasmodium sporozoites invade hepatocytes and

proliferate. This is known as the liver stage of malaria and is

followed by the blood stage. Malaria control strategies include

various approaches, such as integrated vector control, clinical

management by antimalarial drugs, and preventive vaccines (2–

6). However, the rapid development and spread of resistant strains

of mosquitoes to insecticides and Plasmodium parasites to

antimalarial drugs pose a threat to malaria control outcomes (7).

The generation of alternative tools, including novel vaccines, is

therefore needed. In 2021, the WHO recommended RTS,S/AS01 as

the first malaria vaccine for children in sub-Saharan Africa and

other regions with a moderate-to-high prevalence of P. falciparum

infections (1). However, the vaccine has only exhibited modest

efficacy and short-term durability and needs to be administered in

four doses to achieve a maximum efficacy of 60–70% in terms of

reducing clinical complications (8–10). A next-generation vaccine

with promising efficacy against infections caused by Plasmodium

parasites is therefore urgently needed.

In liver-stage malaria, CD8+ T cells play an important role in

protection, as shown by the radiation-attenuated sporozoite (RAS)

vaccine, which has been highly effective in mouse and human

malaria models (11–15). The circumsporozoite protein (CSP) has

been described as a major antigen in liver-stage malaria in mouse

models, and its MHC I-restricted epitope has further been described

(16–18). The RTS,S vaccine has been developed for pre-erythrocytic

stage interruption using CSP but has been shown to stimulate the

production of specific antibodies and weak T cell-mediated

immunity (19). Therefore, a malaria vaccine that can effectively

induce potent cytotoxic CD8+ T cells that are specific to the liver

stage is required (20).

Resident memory CD8+ T (TRM) cells constitute a recently-

identified lymphocyte lineage that occupies tissue without

recirculating (21). TRM cells are the first-line defenders against

reinfection by pathogens. TRM cells further express unique surface

markers, such as CD69, based on their localization (21–23).

Recently, liver-resident TRM cells have been reported to play an
Abbreviations: WHO, World Health Organization; CSP, circumsporozoite

protein; RAS, radiation-attenuated sporozoite; TRM,, resident memory CD8+ T;

mRNA, messenger RNA; LNPs, lipid nanoparticles: PbA, Plasmodium berghei

ANKA; B6, C57BL/6N; FLuc, firefly luciferase; PBS, phosphate-buffered saline;

EE, encapsulation efficiency; FBS, fetal bovine serum; ALT, alanine

aminotransferase; ELISA, enzyme-linked immunosorbent assay; ssPalm, SS-

cleavable pH-activated lipid-like material; DOPC, 1,2-dioleoyl-sn-glycero-3-

phosphochol ine ; DMG-PEG2000, 1 ,2-dimyristoy l-rac-glycero-3-

methylpolyoxyethylene; OVA, ovalbumin; TCR, T-cell receptor; TEM, effector

memory CD8+ T cells; TCM, central memory CD8+ T cells; GAS, genetically-

attenuated sporozoites; CAS, chemically-attenuated sporozoites; PDI.,

polydispersity index.
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important role in the protection against sporozoite infections (22).

The efficient induction of TRM cells in the liver may be key for the

development of next-generation malaria vaccines since TRM cells

contribute to the protection against sporozoite infections.

Nucleic acid-based therapies have become a new trend in

alternative vaccine development (24). Messenger RNA (mRNA)-

based vaccinations do not pose the risks of vaccine-derived

infections and insertional mutagenesis as opposed to virus-based

and DNA vaccines, respectively. mRNA delivery systems to the

cytoplasm of target cells have been intensively studied to protect

mRNA from RNases. Among them, lipid nanoparticles (LNPs) are

the most advanced mRNA carriers intended for vaccine-based

therapies (25–27). The ionizable lipids in LNPs form complexes

with mRNA in lipid vesicles to yield core-shell structures (28). After

LNPs are taken into cells via endocytosis, the ionizable lipids in the

LNPs become positively charged in response to acidification.

Membrane destabilization is then promoted, and endosomal

escape is facilitated to deliver the mRNA in the LNPs to the

cytosol. It has also been suggested that LNPs accumulate in the

liver when administered systemically via intravenous and

intramuscular injections (29, 30). Through such mechanisms,

LNPs can deliver intact mRNA to the cytosol for translation in

the liver.

To develop a liver-stage-specific T cell-mediated vaccine, we

used a liver-directed LNP-based mRNA vaccine platform and the

rodent malaria parasite P. berghei ANKA (PbA). The mRNA-LNP

vaccine was found to induce potent TRM cells in the liver, which are

protective against liver-stage malarial infections.
2 Materials and methods

2.1 Animals

C57BL/6N (B6) and BALB/c mice (5–9 weeks old; CLEA,

Tokyo, Japan) were used for the experiments. H-2Kb-restricted

OT-I transgenic mice expressing the TCR specific for SIINFEKL

were provided by Dr. H. Kosaka (Osaka University, Osaka, Japan)

(31). B6.SJL-Ptprc congenic (B6.SJL) mice (CD45.1+) were provided

by Dr. Y. Takahama (University of Tokushima, Tokushima, Japan).

The B6.SJL and OT-I mice were bred, and the offspring were

intercrossed to obtain CD45.1+ OT-I mice. The mice were housed

in a standard clean room under conventional conditions at the

Laboratory Animal Center for Animal Research at Nagasaki

University. The animal experiments were approved by the

Institutional Animal Care and Use Committee of Nagasaki

University and were conducted in accordance with the guidelines

for Animal Experimentation at Nagasaki University.
2.2 mRNA

OVA and firefly luciferase (FLuc) mRNA were purchased from

TriLink (San Diego, CA, USA). The DNA template vector for the

transcription of mRNA, pSHI, was constructed by inserting the

sequences of the T7 promoter, 5’ UTR, IgGk-chain signal sequence,
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1116299
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nakamae et al. 10.3389/fimmu.2023.1116299
haemagglutinin tag (YPYDVPDYA), EcoRI and BamHI restriction

sites, 3’ UTR, 120 adenosines, and SapI restriction site into the

pUC-GW-Amp vector (GENEWIZ, South Plainfield, NJ, USA).

The truncated CSP sequence (PBANKA_0403200) lacking 1–23

amino acids (aa) in the signal sequence, 93–201 aa in the repeat

region, and 319–340 aa in the GPI anchor region was synthesized by

Eurofins Genomics (Ebersberg, Germany) and inserted into pSHI

via the traditional cloning method using the EcoRI and BamHI

restriction enzymes (New England Biolabs, Ipswich, MA, USA).

The codon usage of the sequences coding the IgGk-chain signal

sequence, haemagglutinin tag, and CSP was optimized for Mus

musculus. The constructed CSP template plasmid was purified from

Escherichia coli using the EndoFree Plasmid Maxi Kit (Qiagen,

Hilden, Germany) and linearized using the SapI restriction enzyme

(New England Biolabs). In-vitro transcription was performed using

the HiScribe T7 High Yield RNA Synthesis Kit (New England

Biolabs) with CleanCap Reagent AG (TriLink) to cap the 5’ end of

the RNA. CSP mRNA was purified using LiCl precipitation after the

DNase treatment. Y-CSP mRNA was synthesized with N1-

methylpseudouridine-5’-triphosphate (TriLink) and purified using

RNeasy Mini Kit (Qiagen).
2.3 Preparation of LNP-
encapsulated mRNA

LNP-encapsulated mRNA was prepared by mixing lipids and

mRNA using a microfluidic system, as previously described (32).

COATSOME® SS-OP (NOF, Tokyo, Japan), 1,2-dioleoyl-sn-

glycero-3-phosphocholine (DOPC; NOF), cholesterol (Nacalai

Tesque, Kyoto, Japan), and 1,2-dimyristoyl-rac-glycero-3-

methylpolyoxyethylene (DMG-PEG2000; NOF) were dissolved to

4.5 mM in ethanol. The molar ratio of each lipid was 6/1/3 (SS-OP/

DOPC/cholesterol), and DMG-PEG2000 was added at a

concentration of 1.5% of the total lipids. The mRNA was diluted

to 7.5 mg/mL in 20 mMmalic acid buffer (pH 3.0). Lipid and mRNA

solutions were mixed in a NanoAssemblr® Benchtop (Precision

NanoSystems, British Columbia, Canada) using a total flow rate of 4

mL/min and a flow rate ratio of 3:1 (mRNA:lipid). The resultant

solution was dialyzed against MES buffer (pH 6.5) to remove

ethanol and then concentrated to obtain the necessary

concentration through ultrafiltration using Amicon® Ultra-15

(Merck, Darmstadt, Germany). The LNPs were then suspended in

phosphate-buffered saline (PBS).
2.4 Characterization of LNPs

The particle size, polydispersity index, and zeta potential of the

LNPs were measured using a Zetasizer Nano ZS (Malvern

Instruments, Malvern, UK) as previously described (32). The

LNPs were diluted 40 times in PBS and introduced into capillary

cells. The measurements were then taken at 25°C. To evaluate

encapsulation efficiency, mRNA was quantified using the Quant-iT

RiboGreen RNA Assay Kit (Thermo Fisher Scientific, Waltham,

MA, USA). The unencapsulated mRNA concentration was
Frontiers in Immunology 03
measured by quantifying the intact LNPs, while the total mRNA

concentration was measured after the LNPs had been solubilized

using Triton X-100. Encapsulation efficiency (EE) was calculated

using the following formula:

EE = ½(total mRNA) – (unencapsulated mRNA)�   =   (total mRNA)
2.5 In-vivo distribution of FLuc
mRNA-LNPs

To assess the changes in the FLucmRNA-LNPs over time, BALB/

c mice were inoculated with FLuc mRNA-LNPs (5 mg) intravenously,
intramuscularly, or subcutaneously. To detect luminescence, the mice

were administered 150 mg/kg of D-luciferin (Syd labs, Hopkinton,

MA, USA) intraperitoneally and anaesthetized with a mixture of

oxygen and isoflurane (Wako, Osaka, Japan). Ten minutes after the

administration of D-luciferin, the mice were imaged using IVIS

Lumina II (Caliper Life Sciences, Waltham, MA, USA) with an

exposure time of 5 s. To detect the tissue distribution of the FLuc

mRNA-LNPs, B6 mice were intravenously inoculated with FLuc

mRNA-LNPs (5 mg) and administered D-luciferin (150 mg/kg)

intraperitoneally 3 h later. The reaction was observed for 10 min.

The brains, hearts, livers, spleens, lungs, kidneys, and intestines were

collected immediately and imaged using an IVIS imager for 5 s.

Bioluminescent signals in the regions of interest were quantified using

Living Image 3.0 (Caliper Life Sciences).
2.6 Adaptive transfer and immunization

OT-I CD8+ cells were isolated using the BD™ IMag cell

separation system as previously described (33). In brief, CD8+ (>

95%) cells were prepared from the spleen, brachial, and inguinal

lymph nodes of the CD45.1+ OT-I mice using anti-CD8 IMag (BD

Biosciences, Franklin, NJ, USA) and injected into the tail veins of

the B6 mice (1 × 106/mouse). Two days later, the mice were

immun i z ed w i th OVA mRNA-LNPs in t r avenous l y ,

intramuscularly, or subcutaneously. The BALB/c mice were

intramuscularly immunized with 3.35 mg of CSP mRNA-LNPs or

6.7 mg of Y-CSP mRNA-LNPs at 3-week intervals.
2.7 Tissue processing for T-cell analysis

The mice were anaesthetized with a combination of 0.75 mg/kg

of medetomidine hydrochloride (Kyoritsu Seiyaku, Tokyo, Japan), 4

mg/kg of midazolam (Sandoz K.K., Tokyo, Japan), and 5 mg/kg of

butorphanol tartrate (Meiji Seika Pharma Co., Ltd., Tokyo, Japan),

in addition to the inhalation of isoflurane (Wako) at different time

points after being immunized. The mice were perfused with 20 mL

of cold PBS, after which their livers and spleens were harvested. The

livers were sliced using scissors and crushed in a Petri dish with a

syringe plunger. Liver cell suspensions were passed through a 196-

mm stainless mesh. After centrifugation at 430 × g for 5 min at room

temperature, the pellets were suspended in a solution of 35%
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isotonic Percoll (GE Healthcare, Chicago, IL, USA). The cells were

then centrifuged at 500 × g for 30 min at room temperature with no

brake. Parenchymal cells and debris were removed using a

disposable pipette, and the pellet was suspended in Gey’s solution

to lyse the red blood cells. Liver cell suspensions were then passed

through a 70-mm mesh. The spleens were crushed in a Petri dish

using a syringe plunger. Spleen cell suspensions were then passed

through a 70-mm mesh and treated with Gey’s solution to lyse the

red blood cells.
2.8 Flow cytometry analysis

The cells were stained with Zombie-Aqua (BioLegend, San

Diego, CA, USA) for 15 min at room temperature in the dark to

identify and exclude dead cells from the analysis. After being

washed, the cells were stained with T-Select H-2Kb OVA

Tetramer-SIINFEKL-PE (MBL, Tokyo, Japan) or T-Select H-2Kd

malaria Pb9 Tetramer-SYIPSAEKI-PE (MBL) for 30 min at 4°C in

the dark. The cells were then washed and stained for 30 min at 4°C

in the dark to identify cell surface molecules with monoclonal

antibodies. The antibodies included APC-anti-CD3e (145-2C11),

BV785-anti-CD3e, FITC-anti-CD8 (KT15), APC-R700-anti-CD44

(IM7), BV421-anti-CD62L (MEL-14), BV785-anti-CD127

(A7R34), APC-anti-CD69 (H1.2F3), and BV650-anti-KLRG1

(2F1). All of the antibodies were purchased from BioLegend, BD

Biosciences, or MBL. The stained cells were fixed with 1%

paraformaldehyde (Wako) and analyzed using the BD

FACSCelesta Flow Cytometer (BD Biosciences) and FlowJo

software (BD Biosciences).

Intracellular staining was performed according to the

manufacturer’s instructions (BD Biosciences). The cells (1.5–3 ×

106/mL) were stimulated for 6 h with 1 mg/mL of the SIINFEKL

peptide in RPMI-1640 medium with L-Glutamine and Phenol Red

(Wako) supplemented with 10% heat-inactivated fetal bovine

serum (FBS), penicillin/streptomycin, non-essential amino acids

(0.1 mM), sodium pyruvate (1 mM), and 2-mercaptoethanol (5 ×

10-5 M) with GolgiPlug (BD Biosciences) for the last 4 h. The cells

were then stained with Zombie-Aqua for 15 min at room

temperature in the dark to identify and exclude dead cells from

the analysis. After adding the Fc receptor blocker (2.4G2), the cells

were stained with the BV785-anti-CD3e, FITC-anti-CD8, and

BV421-anti-CD107a monoclonal antibodies or BV421-Rat IgG2b

Isotype Control. The cells were fixed, permeabilized with the BD

Cytofix/Cytoperm Fixation/Permeabilization kit (BD Biosciences),

and stained with APC-anti-IFN-g (XMG1.2), BV650-anti-TNF-a
(MP6-XT22), APC, PE-anti-Granzyme B (QA16A02), or their

isotype controls. The cells were then analyzed using FACSCelesta

and the FlowJo software.
2.9 Serum ALT levels and anti-OVA
IgG titers

The serum alanine aminotransferase (ALT) levels of the

immunized mice were measured using an automatic analyzer
Frontiers in Immunology 04
(Fuji DRI-chem 3500V; FUJIFILM, Tokyo, Japan). The levels of

anti-OVA IgG antibodies in the sera were determined using an

enzyme-linked immunosorbent assay (ELISA), as previously

described (34). In brief, ELISA plates were coated with 100 mg/
well of the OVA protein (Wako) in PBS overnight at 4°C. The

coated plates were washed with PBS containing 0.05% Tween 20

(washing buffer) and blocked with PBS containing 10% FBS for

30 min at room temperature. After the wash, serum (×40) was

added to the plates, which were then incubated overnight at 4°C.

The plates were washed, incubated with biotin-conjugated goat

anti-mouse IgG-Fc fragment antibodies (Bethyl Laboratories,

Montgomery, TX, USA) for 1 h at room temperature, washed,

and then incubated with horseradish peroxidase-conjugated

streptavidin (BioLegend) for 30 min at room temperature. After

the wash, 1×TMB substrate solution (Thermo Fisher Scientific) was

added to each well, and the plates were incubated at room

temperature for 15 min. Phosphoric acid (2 M) was used to stop

the reaction, and the absorbance was read at 450 and 570 nm using

an iMark Microplate Absorbance Reader (Bio-Rad, Hercules,

CA, USA).
2.10 Parasites and infection

Recombinant Plasmodium berghei ANKA (PbA) expressing

GFP (PbA-GFP) and recombinant P. berghei 676m1cl1 line (Pb-

lucGFP) were used (35–37). Sporozoites were obtained from the

salivary glands of infected female Anopheles stephensi mosquitoes

21–23 days after blood meal feeding. The mice were intravenously

infected with 200 PbA-GFP sporozoites, as previously described

(38). Parasitaemia levels were determined based on the expression

of GFP using a BD FACSCelesta Flow Cytometer 3 days after the

infections. Another group of mice were intravenously infected with

3000 Pb-lucGFP sporozoites. Forty-four hours after infection, the

mice were administered 150 mg/kg of D-luciferin intraperitoneally

and anaesthetized with a mixture of oxygen and isoflurane. Ten

minutes later, the mice were imaged using IVIS Lumina II with an

exposure time of 3 min. Bioluminescent signals in the regions of

interest were quantified using Living Image 3.0. The levels of

parasitemia were determined using a microscopic examination of

standard thin blood smears stained with Giemsa.
2.11 CD8 depletion

Each mouse was intraperitoneally administered 100 mg of anti-
mouse CD8a antibody (2.43) or rat IgG2b isotype control (LTF-2) 1

day before the induction of the sporozoite infections. Both

antibodies were purchased from Bio X Cell (Lebanon, NH, USA).
2.12 Statistical analysis

Statistical analyses were performed using the GraphPad Prism

software (version 8). All data were tested for normal distribution

using the Shapiro–Wilk test. For comparisons between two groups,
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Welch’s t-test was used to assess statistical significance if the sample

data followed a normal distribution; otherwise, the Mann–Whitney

U test was used. For comparisons between more than two groups, a

one-way or two-way ANOVA with Bonferroni’s post-hoc test was

performed if the sample data followed a normal distribution;

otherwise, the Kruskal–Wallis and Dunn’s post-hoc tests

were performed.
3 Results

3.1 Preferential expression of mRNA carried
by LNPs in the liver

We generated LNPs composed of four types of lipids, including

SS-cleavable pH-activated lipid-like material (ssPalm), 1,2-dioleoyl-

sn-glycero-3-phosphocholine (DOPC), 1,2-dimyristoyl-rac-

glycero-3-methylpolyoxyethylene (DMG-PEG2000), and

cholesterol. ssPalm contains dual sensing motifs that consist of a

tertiary amine and disulfide bond that can respond to the

intracellular environment, such as acidic conditions in the

endosome and reductive conditions in the cytosol (39). We

prepared LNPs with SS-OP, which is the third generation of

ssPalm and has an oleic acid scaffold and a phenyl ester linker

with anti-inflammatory and self-degradable properties (39). First,

we used LNPs carrying firefly luciferase (FLuc) reporter mRNA

(FLuc mRNA-LNPs) to determine the target tissue of the LNPs

(Table 1). To determine the distribution of the LNPs, BALB/c mice

were used as the pigment from darker-haired small animals can

reduce bioluminescent signals. Three groups of mice were injected

with FLuc mRNA-LNPs intravenously, intramuscularly, or

subcutaneously, and the bioluminescence intensity of the total

body and upper abdominal regions were examined 1–96 h after

the injections (Figure 1A). The mice that received an intravenous

injection exhibited the strongest FLuc expression in the liver, with a

peak response 3 h after the injection. The mice that received

intramuscular and subcutaneous injections exhibited lower FLuc

expression than those receiving intravenous injections, with a

delayed peak 6 h after the injections. FLuc expression levels were

higher after the intramuscular injections than after the

subcutaneous injections. Following the intramuscular and

subcutaneous injections, FLuc expression was detected around the

administration sites. To assess the immune responses in the mice,

we used ovalbumin (OVA) as a model antigen. OVA has a

dominant CD8+ T cell epitope that is restricted by H-2kb. We

removed each organ from the C57BL/6N (B6) mice that had been

administered FLuc mRNA-LNPs intravenously and performed an

ex-vivo imaging analysis 3 h after the injections (Figure 1B and

Supplementary Figure 1). The FLuc signals in the liver showed the
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highest intensity, whereas those in the spleen, intestines, and kidney

were marginal.
3.2 Intravenous injections of OVA mRNA-
LNPs activated OVA-specific CD8+ T cells
and induced resident memory CD8+ T cells
in the liver

To assess the immunogenicity of the mRNA-LNPs in the liver,

we used OVA-specific T-cell receptor (TCR) transgenic mice,

hereafter referred to as “OT-I” mice (31). B6 mice were

administered 1 × 106 CD8+ T cells from CD45.1+ OT-I mice

(OT-I cells) and intravenously immunized with OVA mRNA-

LNPs (n = 3). Seven days after immunization, the proportion of

OT-I cells within the CD8+ T cells reached 56.6 ± 8.3% in the livers

of the mice immunized with 2 mg of OVA mRNA (Figure 2).

Although the OT-I cells increased in both the liver and spleen in a

dose-dependent manner, their increase was greater in the liver than

in the spleen (Figure 2). These results indicate that OVA mRNA-

LNPs activate OT-I cells and induce their proliferation. After

confirming the immunization effects of the mRNA-LNPs in the

liver, we examined whether the OVA mRNA-LNPs would induce

endogenous OVA-specific CD8+ T cells in B6 mice. Seven days after

immunization, tetramer-positive OVA-specific CD8+ T cells and

their CD44hi CD62Llo CD127- effector phenotypes increased in

both the liver and spleen in a dose-dependent manner. The

numbers of tetramer-positive cells and their effector phonotypes

in the liver were greater than those in the spleen (Figures 3A, B and

Supplementary Figures 2A, 3A, B). Serum alanine aminotransferase

(ALT) levels were further measured to evaluate the extent of liver

injury in the immunized mice. Although the ALT levels in the mice

immunized with 10 mg of OVA mRNA were higher than those in

the control mice, no significant differences were observed between

the mice immunized with 5 mg of OVA mRNA or less and the

control mice (Figure 3C). We therefore used 5 μg of OVA mRNA-

LNPs for the subsequent experiments.

To assess whether the OVA mRNA-LNPs could induce OVA-

specific TRM cells, B6 mice were immunized once with OVA

mRNA-LNPs intravenously. One month after immunization,

OVA tetramer+ CD8+ T cells remained in the liver and spleen,

with their proportion in the liver being higher than that in the

spleen (Figure 3D). TRM cells (CD8+ CD44hi CD62Llo CD69+

KLRG1-) comprised 48.4 ± 13.1% of the OVA tetramer+ CD8+ T

cells in the liver, but there were few TRM cells in the spleen

(Figure 3E and Supplementary Figures 2B, 3C, D). Effector

memory CD8+ T cells (TEM) (CD8+ CD44hi CD62Llo CD69-)

comprised 37.9 ± 14.9% and central memory CD8+ T cells (TCM)

(CD8+ CD44hi CD62Lhi) comprised 6.8 ± 3.5% of the tetramer+
TABLE 1 Physicochemical properties of LNPs.

Size (z-average) (nm) PDI* Zeta potential (mV) EE** (%)

94.8 ± 2.7 0.070 ± 0.012 –2.13 ± 0.84 97.1 ± 1.61
*PDI, polydispersity index; **EE, Encapsulation efficiency. Data represent mean ± S.D. (n = 3).
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CD8+ T cells in the liver (Supplementary Figures 3C, D). In the

spleen, OVA-specific CD8+ T cells consisted of 3.7 ± 1.4% TRM cells,

50 ± 7.3% TEM cells, and 33.3 ± 10.5% TCM cells. The number of

liver TRM cells was maintained for more than 2 months after

immunization (Figures 3D, E). To investigate the effector function

of the memory CD8+ T cells in the liver, we performed intracellular

cytokine staining 1 month after immunization (Supplementary

Figure 4). An in-vitro stimulation with the SIINFEKL peptide,

which is an MHC class I dominant epitope of OVA, detected

IFN-g+ and INF-g+ TNF-a+ double-producing CD8+ T cells in the

livers of the immunized mice (Supplementary Figure 4A). In

addition, the co-expression of Granzyme B and the degranulation
Frontiers in Immunology 06
marker CD107a was induced in the CD8+ T cells in response to the

SIINFEKL peptide stimulation (Supplementary Figure 4B).

Collectively, these data suggest that a single dose of OVA mRNA-

LNPs can induce OVA-specific TRM cells, which may possess

multifunctional effector activity.

Next, we examined whether immunization via intramuscular

and subcutaneous routes would induce OVA-specific TRM cells in

the liver. Seven days after immunization, the levels of OVA-specific

CD8+ T cells in the livers of the mice immunized via intramuscular

and subcutaneous routes were not significantly different from those

immunized intravenously, whereas the levels of OVA-specific CD8+

T cells in the spleen were higher in the mice immunized
FIGURE 2

OT-I cells were strongly activated in the liver following a single intravenous injection of OVA mRNA-LNPs. CD45.1+ OT-I cells (1 × 106) were
adoptively transferred to B6 mice. Two days after cell transfer, the mice were intravenously injected with serial doses of OVA mRNA-LNPs or PBS (n
= 3). Seven days post injection, the mice were analyzed. Representative dot plots show the proportion of OT-I in CD3+CD8+ cells within the liver
(upper panel) and spleen (lower panel).
A B

FIGURE 1

Distribution of LNPs in the mice. (A) Temporal expression of FLuc mRNA. BALB/c mice were injected with LNPs containing 5 µg of FLuc mRNA (5 µg
of FLuc mRNA-LNPs) intravenously, intramuscularly, or subcutaneously (n = 3). As a negative control, another group of mice were intravenously
injected with 100 mL of PBS. Bioluminescence was measured 1, 3, 6, 12, 24, 48, 72, and 96 h post injection. Representative images of ventrodorsal
(V→D) and dorsabdominal (D→V) shootings taken 3 h after the injection are shown on the left. A summary graph of the total flux [photons/s] in the
liver is shown on the right. Data represent the mean ± SD. (B) FLuc expression in organs. B6 mice were intravenously injected with LNPs containing
5 mg of FLuc mRNA or 200 mL of PBS (n = 4). The liver, spleen, gastrointestinal tract, kidneys, brain, heart, and lungs were collected 3 h after
injection, and bioluminescence was measured. Representative images for each organ are shown. Lv, Liver; S, Spleen; I, gastrointestinal tract; B, Brain;
K, Kidney; H, Heart; Lg, Lung.
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subcutaneously than in those immunized intravenously

(Figure 4A). The proportions of OVA-specific CD8+ T cells with

the effector phenotype (CD44hi CD62Llo CD127-) that were

induced in the liver following intravenous, intramuscular, and

subcutaneous immunization were at similar levels (90.4 ± 4.2,

88.38 ± 1.8, and 87.1 ± 2.5%, respectively; Figure 4B,

Supplementary Figures 2A, 5). After 1 month, the levels of OVA-

specific TRM cells were evaluated in the mice immunized via

different routes. The proportions of OVA-specific CD8+ T cells in

the livers of the intravenously-immunized mice were comparable to

those in the intramuscularly-immunized mice and higher than

those in the subcutaneously-immunized mice (Figure 4C). The

proportion of TRM cells in the liver was highest in the mice

immunized intravenously, followed by those immunized

intramuscularly (Figure 4D and Supplementary Figure 6). In

contrast, the majority of the tetramer+ cells in the liver were TEM

cells when the mice were immunized subcutaneously

(Supplementary Figure 6B). In the spleen, OVA-specific memory

CD8+ T cells were poorly induced by all three forms of

immunization and were mainly TEM and TCM cells (Figures 4C,

D; Supplementary Figure 6). Additionally, we tested the levels of

IgG specific to the OVA protein to confirm the induction of

humoral immunity by the mRNA-LNPs. Compared with the

phosphate-buffered saline (PBS) control, the subcutaneous

injections induced significantly higher levels of anti-OVA IgG

antibodies, whereas the intravenous and intramuscular injections

did not (Supplementary Figure 7). Taken together, these results
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indicate that the intravenous route was the most effective in

inducing specific TRM cells in the liver, followed by the

intramuscular and subcutaneous routes; however, when

considering the practical applications of human vaccines, the

intramuscular route may be more feasible.
3.3 Intramuscular immunization in BALB/c
mice with CSP mRNA-LNPs protected
against Plasmodium berghei
ANKA sporozoites

To determine the efficacy of vaccinations with Plasmodium

antigens and CSPs, we immunized BALB/c mice with PbA CSP

mRNA as the dominant MHC class I epitope of PbA CSP is present

on H-2Kd and not on Kb or Db (Figure 5A). The NANP repeat

region of the CSP was excluded from the construct as we mainly

aimed to induce a cell-mediated protective immune response. The

BALB/c mice were immunized intramuscularly with CSP mRNA-

LNPs twice at 3-week intervals. As a negative control, another

group of mice were immunized with OVA mRNA-LNPs. The

proportion of CSP-specific CD8+ T cells significantly increased in

the livers of the CSP mRNA-LNP-immunized mice 33 days after the

last immunization; 35.5 ± 7.2% of the cells were TRM cells

(Figures 5B, C and Supplementary Figure 8). One month after the

second immunization, the mice were administered with 200 GFP-

expressing PbA (PbA-GFP) sporozoites. Half of the immunized
A B

D E

C

FIGURE 3

OVA mRNA-LNPs induced OVA-specific CD8+ T cells and memory cells in the liver. (A–C) B6 mice were intravenously injected with the indicated
doses of OVA mRNA-LNPs or 200 mL of PBS. Seven days after injection, the mice were analyzed. The proportion of H-2Kb SIINFEKL-restricted
tetramer+ within the CD8+ T cells in the liver (left) and spleen (right) is shown (A). The proportion of effector (CD127- CD44hi CD62Llo) cells within
the tetramer+ cells in the liver (left) and spleen (right) is shown (B). The serum ALT levels on day 7 are shown in (C). (D, E) B6 mice were
intravenously injected with 5 mg of OVA mRNA-LNPs or 200 mL of PBS (n = 6). One and two months after injection, the mice were analyzed. The
proportion of tetramer+ CD8+ T cells in the liver (left) and spleen (right) is shown (D). The proportion of TRM (CD44hi CD62Llo CD69+ KLRG1-) cells
within the tetramer+ cells in the liver (left) and spleen (right) is shown (E). These results were obtained from three (A–C) and two experiments (D, E).
The data represent the mean (A, B, D, E) or the mean ± SD (C); *P< 0.05, ***P< 0.001, n.s. (not significant), as indicated by a one-way ANOVA with
Bonferroni’s post-hoc test (C) and Mann–Whitney U test (D, E).
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mice (three out of six) exhibited sterile immunity, and the onset of

the blood stage was delayed by 2 days in the other mice when

compared with the negative control mice (Figure 5D). To confirm

that immunization with CSP mRNA-LNPs provides protection

during the liver-stage malaria, the parasite burden in the liver was

determined using luciferase- and GFP-expressing P. berghei (Pb-

lucGFP). BALB/c mice were immunized twice with N1-methyl-

pseudouridine CSP (Y-CSP) mRNA-LNPs at 3-week intervals and

challenged with 3000 Pb-lucGFP sporozoites 5 weeks after the final

immunization. Forty-four hours after infection, luciferase activity

was monitored using IVIS. The expression levels of luciferase in Y-

CSP-immunized mice were significantly lower than those in the

control mice (Figure 5E). We also evaluated the longevity of the

efficacy of CSP mRNA-LNPs 9 and 13 weeks after the final

immunization (Supplementary Figure 9). Protective immunity

against the sporozoite infection in the mice immunized with Y-

CSP persisted for at least 13 weeks after final the immunization.

To confirmed that this protection is dependent on CD8+ T cells,

Y-CSP mRNA-LNP immunized mice were administrated anti-

mouse CD8 antibodies 1 day before the sporozoite infection to

deplete CD8+ T cells. As a negative control, Y-CSP mRNA-LNP

immunized mice were administrated control IgG 1 day before the

sporozoite infection. These mice were infected with 3000 Pb-

lucGFP sporozoites. Forty-four hours after infection, the control

IgG-treated mice exhibited significantly lower levels of luciferase

expression than the unimmunized mice (Figure 6). In contrast, the

anti-CD8-treated mice exhibited luciferase expression levels that

were similar to those in the unimmunized mice and higher than

those in the control IgG-treated mice, although the latter results

were not significant. These results indicate that CD8+ T cells played
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a crucial role in the protection against sporozoite infection in mice

immunized with CSP mRNA-LNPs. Taken together, these results

suggest that mRNA-LNPs have the potential to be used in malaria

vaccines for clinical use.
4 Discussion

RAS is a well-established malaria vaccine model that provides

sterile protection in rodent models and humans infected with P.

falciparum (11, 15). The major mechanisms of action of RAS

include the induction of cytotoxic T cells residing in the liver,

which terminate the liver-stage propagation of P. falciparum and

antibodies that block the invasion of sporozoites into hepatocytes

(19). In this study, we aimed to develop a malaria vaccine that

efficiently induces cellular immunity in the liver. We found that

mRNA-LNPs targeted the expression of its coding protein in the

liver and induced antigen-specific liver TRM cells through

intravenous or intramuscular injections. Generally, LNPs are

thought to accumulate in the liver when administered

systemically via intravenous and intramuscular injections (27, 29,

30). This is likely because the liver is a site for lipid metabolism. It

has been shown that liver TRM cells can be induced by targeting

antigens to the liver using the “prime and trap vaccination”method,

in which antigen-specific CD8+ T cells are activated in primary

lymphoid organs at the “prime” step and targeted to the liver using

antigen peptide-expressing recombinant adeno-associated viruses

in the “trap” step (22, 40, 41). mRNA-LNPs target antigens in the

liver and are therefore an ideal method of choice to induce TRM cells

in the liver.
A B

DC

FIGURE 4

TRM cell generation was affected based on the injection routes of the OVA mRNA-LNPs. B6 mice were injected with 5 mg of OVA mRNA-LNPs
intravenously (i.v.), intramuscularly (i.m.), or subcutaneously (s.c.). As a negative control, another group of mice were intravenously injected with 100
mL of PBS. (A, B) Seven days after injection, the mice were analyzed (n = 5). The proportion of tetramer+ CD8+ T cells in the liver (left) and spleen
(right) is shown in (A). The effector (CD127- CD44hi CD62Llo) cells within the tetramer+ cells in the liver (left) and spleen (right) are shown (B).
(C, D) One month after injection, the mice were analyzed (n = 6). The proportion of tetramer+ CD8+ T cells in the liver (left) and spleen (right) is
shown (C). TRM (CD44hi CD62Llo CD69+ KLRG1-) cells within the tetramer+ cells in the liver (left) and spleen (right) are shown (D). These results were
obtained in two experiments. Data represent the mean; *P< 0.05, **P< 0.01, ***P< 0.001, n.s. (not significant), as indicated by a one-way ANOVA
with Bonferroni’s posthoc test.
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It has been reported that P. falciparum CSP (PfCSP) mRNA-

LNP vaccinations substantially protect against infections caused by

transgenic P. berghei sporozoites expressing PfCSP (42). The

mRNA construct in these vaccines includes a NANP B-cell

epitope that is intended to provoke an effective antibody,

particularly an anti-NANP antibody. In the study that developed

the vaccines, the researchers analyzed cytokine production from

splenocytes stimulated with PfCSP ex-vivo. In our study, we

confirmed that protective immunity can be induced by PbA

CSP mRNA without the NANP sequence that includes B-cell

epitope and that the protection against sporozoite infection

depends on CD8+ T cell by treatment with anti-CD8 antibody.
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Moreover, we observed marked CSP-specific TRM generation in the

liver. We focused on the cellular immunity in the liver, especially

liver TRM.

In our LNPs, SS-OP was utilized as an ionizable lipid that plays

an important role in delivering LNPs into the cytoplasm of a target

cell. SS-OP is the third generation of ssPalm, which has two types of

units composed of a tertiary amine and disulfide bond to accelerate

the degradation of LNPs, thereby resulting in the efficient delivery

of nucleic acids into the cytosol (39). SS-OP has an oleic acid

scaffold and a phenyl ester linker and has exhibited anti-

inflammatory and self-degradable properties that allow for the

efficient release of mRNA (43, 44). Compared with DLin-MC3-
A

B

D

E

C

FIGURE 5

Sterile immunity against the PbA sporozoite was induced by PbA circumsporozoite protein (CSP) mRNA-LNPs. (A) Structure of the modified CSP.
The signal peptide, repeat region (B-cell epitope), and GPI anchor were deleted from the wild-type CSP, and signal peptides of IgGk and HA tags
were inserted to create modified CSP. (B) BALB/c mice were injected with 3.35 mg of CSP, 5 mg of OVA mRNA-LNPs, or 100 mL of PBS
intramuscularly twice at 3-week intervals. One month after the final injection, the proportion of tetramer+ cells within the CD8+ T cells in the liver
was observed. (C) The proportions of TRM (CD44hi CD62Llo CD69+ KLRG1-), TEM (CD44hi CD62Llo CD69 -), TCM (CD44hi CD62Lhi), naïve (CD44lo

CD62Lhi), and other cell populations within the tetramer+ cells in the livers of the mice immunized with CSP mRNA-LNPs are shown. (D) Mice
immunized with CSP mRNA-LNPs were infected with 200 PbA-GFP sporozoites. The left graph shows the proportion of uninfected mice (less than
0.005% of parasitaemia). Parasitaemia 3–7 days after infection is shown on the right side. (E) BALB/c mice were intramuscularly injected with 6.7 mg
of N1-methyl-pseudouridine CSP (Y-CSP) mRNA-LNPs or 100 mL of PBS twice at 3-week intervals (n = 6). One month after final injection, the mice
were infected with 3000 Pb-lucGFP sporozoites. Forty-four hours after infection, bioluminescence was measured. Representative images of
ventrodorsal shootings are shown on the left. A summary graph of the total flux [photons/s] in the liver is shown on the right. The results were
obtained across two experiments. (B) The data represent the mean; *P< 0.05, **P< 0.01, Kruskal–Wallis test with Dunn’s post-hoc test. (D) The data
represent the mean of parasitaemia ± SD. The Kruskal–Wallis test with Dunn’s post-hoc test was performed 3–7 days after infection. Compared to
the PBS group, the PbCSP group exhibited significantly lower parasitaemia 4–7 days after infection (P< 0.01). Compared with the OVA group, the
PbCSP group exhibited significantly lower parasitaemia 6 and 7 days after infection (P< 0.05). (E) The data represent the mean ± SD; **P< 0.01, as
indicated by a Mann–Whitney U test.
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DMA, which is an ionizable lipid that was used in the first-approved

siRNA-based drug (ONPATTRO®) and has a tertiary amine, SS-

OP efficiently delivered mRNA into the liver (43). Our LNPs that

were composed of SS-OP likely induced a large amount of antigen

expression in the liver without excessive inflammatory responses,

which would have caused autoimmunity. Nevertheless, further

assessment of our LNPs should be pursued.

The mRNA-LNPs induced stronger immune responses in the

liver than in the spleen. This was likely related to the expression

levels of the antigens, as shown by their predominant expression in

the liver after the intravenous injections of the mRNA-LNPs. This

relationship also reflected the route of immunization. One month

after immunization, when antigens in the liver were highly

expressed, the antigen-specific TRM cells remained in the liver in

higher numbers when the mice were immunized via the three

different routes. Furthermore, because the intramuscular and

subcutaneous injections led to the expression of antigens at the

injection sites, these routes likely primed the immune response

through other mechanisms, such as different kinds of antigen-

presenting cells. The memory phenotype of antigen-specific CD8+

T cells and levels of specific antibodies also varied depending on the

route of immunization. Further studies on the actual mechanisms

that induced these differences are required to better understand

these findings.

RAS, genetically-attenuated sporozoites (GAS), and chemically-

attenuated sporozoites (CAS) in mice and humans have been

reported to provide almost 100% sterile immunity at the pre-

erythrocytic stage (15, 45–49). The present forms of mRNA-LNP-

coding CSPs do not yield complete sterile immunity. Out of the six

mice that were vaccinated with CSP mRNA, three exhibited sterile

immunity, and the other three showed development of a blood stage
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that was delayed by 2 days. This delayed onset of the blood stage

was considered to lead to approximately 80% protection against the

liver stage of malaria (50). When considering why our LNPs did not

yield complete sterile protection, we determined that the number of

CSP-specific TRM cells was insufficient, although the possibility of a

low function in the TRM cells induced by the mRNA-LNPs has also

been taken into account. Previous studies have shown that RASV-

immunized B6 mice have approximately 104 of specific TRM cells in

the liver and further exhibit 30% sterile immunity (22, 40, 51). This

number of TRM cells in the liver was similar to that of our CSP-

specific TRM cells in the liver. These studies have further shown that

complete protection against PbA sporozoites requires 105 specific

TRM cells in the liver. In BALB/c mice, P. yoelii RASV, which is a

vaccine against another strain of rodent malaria, has been found to

induce 70% sterile protection, although only 102 of CSP-specific

TRM cells in the liver have been found to be induced following the

use of this vaccine (52). However, the required number of TRM cells

in the liver is likely to differ depending on the malarial strains

causing infection. There may also be other protective factors, such

as natural immunity by adjuvant effects. In such cases, even if the

same levels of adaptive immunity occur, variation may further

occur individually as found in a human study investigating gamma

delta T cells, natural killer cells, and CD4+ T cells in Controlled

Human Malaria Infection (53).

In conclusion, we successfully used the mRNA-LNP platform to

induce antigen-specific TRM cells in the liver and further induced

strong protective immunity against sporozoite infections. This

platform may therefore be useful in the development of new

vaccine candidates to induce liver TRM cells efficiently. It may

further contribute to accelerating the development of T cell-based

malaria vaccines.
FIGURE 6

CD8+ T cells played a pivotal role of the protection against sporozoite infection in the mice immunize with CSP mRNA-LNPs. BALB/c mice were
intramuscularly injected with 6.7 mg of Y-PbCSP mRNA-LNPs or 100 mL of PBS twice at 3-week intervals. One month after the final injection, the
mice immunized with Y-CSP mRNA-LNPs were intraperitoneally administrated 100 mg of anti-CD8 antibodies to deplete CD8+ T cells (n = 5). The
other mice immunized with Y-CSP mRNA-LNPs were intraperitoneally administrated 100 mg of control rat IgG2b as a control (n = 5). One days after
the antibody treatment, the mice were infected with 3000 Pb-lucGFP sporozoites. Forty-four hours after infection, bioluminescence was measured.
Representative images of ventrodorsal shootings are shown on the left. A summary graph of the total flux [photons/s] in the liver is shown on the
right. The results were obtained across three experiments. The data represent the mean ± SD; *P< 0.05, as indicated by a one-way ANOVA with
Bonferroni’s post-hoc test.
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