162 research outputs found

    International consensus guidelines on surveillance for pancreatic cancer in chronic pancreatitis. Recommendations from the working group for the international consensus guidelines for chronic pancreatitis in collaboration with the International Association of Pancreatology, the American Pancreatic Association, the Japan Pancreas Society, and European Pancreatic Club

    Get PDF
    Background: Patients with chronic pancreatitis (CP) have an increased risk of pancreatic cancer. We present the international consensus guidelines for surveillance of pancreatic cancer in CP. Methods: The international group evaluated 10 statements generated from evidence on 5 questions relating to pancreatic cancer in CP. The GRADE approach was used to evaluate the level of evidence available per statement. The working group voted on each statement for strength of agreement, using a nine-point Likert scale in order to calculate Cronbach's alpha reliability coefficient. Results: In the following domains there was strong consensus: (1) the risk of pancreatic cancer in affected individuals with hereditary pancreatitis due to inherited PRSS1 mutations is high enough to justify surveillance; (2) the risk of pancreatic cancer in patients with CP associated with SPINK1 p. N34S is not high enough to justify surveillance; (3) surveillance should be undertaken in pancreatic specialist centers; (4) surveillance should only be introduced after the age of 40 years and stopped when the patient would no longer be suitable for surgical intervention. All patients with CP should be advised to lead a healthy lifestyle aimed at avoiding risk factors for progression of CP and pancreatic cancer. There was only moderate or weak agreement on the best methods of screening and surveillance in other types of environmental, familial and genetic forms of CP. Conclusions: Patients with inherited PRSS1 mutations should undergo surveillance for pancreatic cancer, but the best methods for cancer detection need further investigation

    Structural Determinants of the APOBEC3G N-Terminal Domain for HIV-1 RNA Association

    Get PDF
    APOBEC3G (A3G) is a cellular protein that inhibits HIV-1 infection through virion incorporation. The interaction of the A3G N-terminal domain (NTD) with RNA is essential for A3G incorporation in the HIV-1 virion. The interaction between A3G-NTD and RNA is not completely understood. The A3G-NTD is also recognized by HIV-1 Viral infectivity factor (Vif) and A3G-Vif binding leads to A3G degradation. Therefore, the A3G-Vif interaction is a target for the development of antiviral therapies that block HIV-1 replication. However, targeting the A3G-Vif interactions could disrupt the A3G-RNA interactions that are required for A3G's antiviral activity. To better understand A3G-RNA binding, we generated in silico docking models to simulate the RNA-binding propensity of A3G-NTD. We simulated the A3G-NTD residues with high RNA-binding propensity, experimentally validated our prediction by testing A3G-NTD mutations, and identified structural determinants of A3G-RNA binding. In addition, we found a novel amino acid residue, I26 responsible for RNA interaction. The new structural insights provided here will facilitate the design of pharmaceuticals that inhibit A3G-Vif interactions without negatively impacting A3G-RNA interactions

    The application of methylation specific electrophoresis (MSE) to DNA methylation analysis of the 5' CpG island of mucin in cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methylation of CpG sites in genomic DNA plays an important role in gene regulation and especially in gene silencing. We have reported mechanisms of epigenetic regulation for expression of mucins, which are markers of malignancy potential and early detection of human neoplasms. Epigenetic changes in promoter regions appear to be the first step in expression of mucins. Thus, detection of promoter methylation status is important for early diagnosis of cancer, monitoring of tumor behavior, and evaluating the response of tumors to targeted therapy. However, conventional analytical methods for DNA methylation require a large amount of DNA and have low sensitivity.</p> <p>Methods</p> <p>Here, we report a modified version of the bisulfite-DGGE (denaturing gradient gel electrophoresis) using a nested PCR approach. We designated this method as methylation specific electrophoresis (MSE). The MSE method is comprised of the following steps: (a) bisulfite treatment of genomic DNA, (b) amplification of the target DNA by a nested PCR approach and (c) applying to DGGE. To examine whether the MSE method is able to analyze DNA methylation of mucin genes in various samples, we apply it to DNA obtained from state cell lines, ethanol-fixed colonic crypts and human pancreatic juices.</p> <p>Result</p> <p>The MSE method greatly decreases the amount of input DNA. The lower detection limit for distinguishing different methylation status is < 0.1% and the detectable minimum amount of DNA is 20 pg, which can be obtained from only a few cells. We also show that MSE can be used for analysis of challenging samples such as human isolated colonic crypts or human pancreatic juices, from which only a small amount of DNA can be extracted.</p> <p>Conclusions</p> <p>The MSE method can provide a qualitative information of methylated sequence profile. The MSE method allows sensitive and specific analysis of the DNA methylation pattern of almost any block of multiple CpG sites. The MSE method can be applied to analysis of DNA methylation status in many different clinical samples, and this may facilitate identification of new risk markers.</p

    Amplified EPOR/JAK2 Genes Define a Unique Subtype of Acute Erythroid Leukemia

    Get PDF
    ゲノム解析から急性赤白血病の変異プロファイルと治療標的を解明 --特定の遺伝子変異群の組み合わせと、特徴となる遺伝子の増幅が鍵--. 京都大学プレスリリース. 2022-08-05.Acute erythroid leukemia (AEL) is a unique subtype of acute myeloid leukemia characterized by prominent erythroid proliferation whose molecular basis is poorly understood. To elucidate the underlying mechanism of erythroid proliferation, we analyzed 121 AEL using whole-genome/exome and/or targeted-capture sequencing, together with transcriptome analysis of 21 AEL samples. Combining publicly available sequencing data, we found a high frequency of gains/amplifications involving EPOR/JAK2 in TP53-mutated cases, particularly those having >80% erythroblasts designated as pure erythroid leukemia (10/13). These cases were frequently accompanied by gains/amplifications of ERG/ETS2 and associated with a very poor prognosis, even compared with other TP53-mutated AEL. In addition to activation of the STAT5 pathway, a common feature across all AEL cases, these AEL cases exhibited enhanced cell proliferation and heme metabolism and often showed high sensitivity to ruxolitinib in vitro and in xenograft models, highlighting a potential role of JAK2 inhibition in therapeutics of AEL

    Pathobiological Implications of MUC16 Expression in Pancreatic Cancer

    Get PDF
    MUC16 (CA125) belongs to a family of high-molecular weight O-glycosylated proteins known as mucins. While MUC16 is well known as a biomarker in ovarian cancer, its expression pattern in pancreatic cancer (PC), the fourth leading cause of cancer related deaths in the United States, remains unknown. The aim of our study was to analyze the expression of MUC16 during the initiation, progression and metastasis of PC for possible implication in PC diagnosis, prognosis and therapy. In this study, a microarray containing tissues from healthy and PC patients was used to investigate the differential protein expression of MUC16 in PC. MUC16 mRNA levels were also measured by RT-PCR in the normal human pancreatic, pancreatitis, and PC tissues. To investigate its expression pattern during PC metastasis, tissue samples from the primary pancreatic tumor and metastases (from the same patient) in the lymph nodes, liver, lung and omentum from Stage IV PC patients were analyzed. To determine its association in the initiation of PC, tissues from PC patients containing pre-neoplastic lesions of varying grades were stained for MUC16. Finally, MUC16 expression was analyzed in 18 human PC cell lines. MUC16 is not expressed in the normal pancreatic ducts and is strongly upregulated in PC and detected in pancreatitis tissue. It is first detected in the high-grade pre-neoplastic lesions preceding invasive adenocarcinoma, suggesting that its upregulation is a late event during the initiation of this disease. MUC16 expression appears to be stronger in metastatic lesions when compared to the primary tumor, suggesting a role in PC metastasis. We have also identified PC cell lines that express MUC16, which can be used in future studies to elucidate its functional role in PC. Altogether, our results reveal that MUC16 expression is significantly increased in PC and could play a potential role in the progression of this disease

    Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity

    Get PDF
    The SARS-CoV-2 Omicron BA.1 variant emerged in 2021(1) and has multiple mutations in its spike protein(2). Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron's evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways(3) demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis

    Surgical strategies for treatment of malignant pancreatic tumors: extended, standard or local surgery?

    Get PDF
    Tumor related pancreatic surgery has progressed significantly during recent years. Pancreatoduodenectomy (PD) with lymphadenectomy, including vascular resection, still presents the optimal surgical procedure for carcinomas in the head of pancreas. For patients with small or low-grade malignant neoplasms, as well as small pancreatic metastases located in the mid-portion of pancreas, central pancreatectomy (CP) is emerging as a safe and effective option with a low risk of developing de-novo exocrine and/or endocrine insufficiency. Total pancreatectomy (TP) is not as risky as it was years ago and can nowadays safely be performed, but its indication is limited to locally extended tumors that cannot be removed by PD or distal pancreatectomy (DP) with tumor free surgical margins. Consequently, TP has not been adopted as a routine procedure by most surgeons. On the other hand, an aggressive attitude is required in case of advanced distal pancreatic tumors, provided that safe and experienced surgery is available. Due to the development of modern instruments, laparoscopic operations became more and more successful, even in malignant pancreatic diseases. This review summarizes the recent literature on the abovementioned topics

    Precursor lesions of early onset pancreatic cancer

    Get PDF
    Early onset pancreatic cancer (EOPC) constitutes less than 5% of all newly diagnosed cases of pancreatic cancer (PC). Although histopathological characteristics of EOPC have been described, no detailed reports on precursor lesions of EOPC are available. In the present study, we aimed to describe histopathological picture of extratumoral parenchyma in 23 cases of EOPCs (definition based on the threshold value of 45 years of age) with particular emphasis on two types of precursor lesions of PC: pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasms (IPMNs). The types, grades, and densities of precursor lesions of PC were compared in patients with EOPCs, in young patients with neuroendocrine neoplasms (NENs), and in older (at the age of 46 or more) patients with PC. PanINs were found in 95.6% of cases of EOPCs. PanINs-3 were found in 39.1% of EOPC cases. Densities of all PanIN grades in EOPC cases were larger than in young patients with NENs. Density of PanINs-1A in EOPC cases was larger than in older patients with PC, but densities of PanINs of other grades were comparable. IPMN was found only in a single patient with EOPC but in 20% of older patients with PC. PanINs are the most prevalent precursor lesions of EOPC. IPMNs are rarely precursor lesions of EOPC. Relatively high density of low-grade PanINs-1 in extratumoral parenchyma of patients with EOPC may result from unknown multifocal genetic alterations in pancreatic tissue in patients with EOPCs

    Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity

    Get PDF
    The SARS-CoV-2 Omicron BA.1 variant emerged in 20211 and has multiple mutations in its spike protein2. Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron’s evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However,&nbsp;in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis&nbsp;of spike-pseudotyped&nbsp;virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis
    corecore