567 research outputs found

    Sustainable Hydrogen from Bio-Oil - Catalytic Steam Reforming of Acetic Acid as a Model Oxygenate

    Get PDF
    Studies were conducted with acetic acid (HAc) as model oxygenate for the design of active and stable catalysts for steam reforming of bio-oil. Pt/ZrO2 catalysts were prepared by wet impregnation technique. The Pt/ZrO2 catalysts showed high activities at initial time on stream, but lost its activity for steam reforming (H2 production) rapidly. During HAc/H2O reaction over Pt/ZrO2, conversion was close to 100% and constant for 3 hr, however, yields of products changed with time. In the beginning (5 min), H2 and CO2 were the main products, CH4 and CO were observed in small quantities. During HAc/H2O reaction over ZrO2 (without Pt), HAc conversion was close to 90%. The conversion of HAc and yields of the products were constant for 3 hr. However, no steam reforming activity (H2 and CO) was observed, and only acetone and CO2 were observed as products. Both Pt/ZrO2 and ZrO2 were very active for HAc conversion. However, H2 and CO, i.e., steam reforming products, were produced only over Pt/ZrO2 and not over ZrO2. ZrO2 showed acetone yields similar to those observed over Pt/ZrO2 after 25 min time on stream. The presence of acetone in the product mixture and formation of deposits on ZrO2 indicated a role for acetone in catalyst deactivation

    Catalyst deactivation during steam reforming of acetic acid over Pt/ZrO2.

    Get PDF
    Steam reforming of acetic acid as a model compound present in bio-oil over Pt/ZrO2 catalysts has been investigated. Pt/ZrO2 yields steam reforming products (i.e., H2, CO, CO2) to the amounts predicted by thermodynamic equilibrium; however, conversion and yields dropped rapidly with time on course. The deactivation was due to blockage of active sites by coke/oligomer formed. This report clarifies cause of the deactivation during steam reforming of acetic acid. It was found that many products can be formed from acetic acid on ZrO2, such as acetone. The experimental results confirmed that aldol condensation of acetone took place on ZrO2 to give larger compounds which can easily become deposits to block active sites for steam reforming. In order to develop durable catalysts for steam reforming of bio-oil, support should be designed to enhance activation of water, minimize dehydration reactions and thus oligomer formation

    Poly(3-hydroxybutyrate) production in an integrated electromicrobial setup: Investigation under stress-inducing conditions

    Get PDF
    Poly(3-hydroxybutyrate) (PHB), a biodegradable polymer, can be produced by different microorganisms. The PHB belongs to the family of polyhydroxyalkanoate (PHA) that mostly accumulates as a granule in the cytoplasm of microorganisms to store carbon and energy. In this study, we established an integrated one-pot electromicrobial setup in which carbon dioxide is reduced to formate electrochemically, followed by sequential microbial conversion into PHB, using the two model strains, Methylobacterium extorquens AM1 and Cupriavidus necator H16. This setup allows to investigate the influence of different stress conditions, such as coexisting electrolysis, relatively high salinity, nutrient limitation, and starvation, on the production of PHB. The overall PHB production efficiency was analyzed in reasonably short reaction cycles typically as short as 8 h. As a result, the PHB formation was detected with C. necator H16 as a biocatalyst only when the electrolysis was operated in the same solution. The specificity of the source of PHB production is discussed, such as salinity, electricity, concurrent hydrogen production, and the possible involvement of reactive oxygen species (ROS)

    MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes

    Get PDF
    GLUT4 shows decreased levels in failing human adult hearts. We speculated that GLUT4 expression in cardiac muscle may be fine-tuned by microRNAs. Forced expression of miR-133 decreased GLUT4 expression and reduced insulin-mediated glucose uptake in cardiomyocytes. A computational miRNA target prediction algorithm showed that KLF15 is one of the targets of miR-133. It was confirmed that over-expression of miR-133 reduced the protein level of KLF15, which reduced the level of the downstream target GLUT4. Cardiac myocytes infected with lenti-decoy, in which the 3′UTR with tandem sequences complementary to miR-133 was linked to the luciferase reporter gene, had decreased miR-133 levels and increased levels of GLUT4. The expression levels of KLF15 and GLUT4 were decreased at the left ventricular hypertrophy and congestive heart failure stage in a rat model. The present results indicated that miR-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiomyocytes

    Microwave assisted heterogeneous catalysis: effects of varying oxygen concentrations on the oxidative coupling of methane

    No full text
    The oxidative coupling of methane was investigated over alumina supported La2O3/CeO2 catalysts under microwave dielectric heating conditions at different oxygen concentrations. It was observed that, at a given temperature using microwave heating, selectivities for both ethane and ethylene were notably higher when oxygen was absent than that in oxygen/methane mixtures. The differences were attributed to the localised heating of microwave radiation resulting in temperature inhomogeneity in the catalyst bed. A simplified model was used to estimate the temperature inhomogeneity; the temperature at the centre of the catalyst bed was 85 °C greater than that at the periphery when the catalyst was heated by microwaves in a gas mixture with an oxygen concentration of 12.5% (v/v), and the temperature difference was estimated to be 168 °C in the absence of oxygen

    Chiroptical Studies on Anisotropic Condensed Matter: Principle and Recent Applications of the Generalized-High Accuracy Universal Polarimeter

    Get PDF
    Chiroptics is the study of the changes in circular polarization states of light transmitted through analytes typically dissolved in isotropic solutions. However, experimental challenges have long prevented chiroptical measurements of anisotropic media such as single crystals of low symmetry, liquid crystals, or structured films. The high accuracy universal polarimeter (HAUP) was introduced in 1983 to investigate the differential refraction of left and right circular polarization states, circular birefringence (CB), and even in anisotropic media that are dominated by the differential refraction of orthogonal linear polarization states, linear birefringence (LB). In this century, the HAUP was extended to also measure not only the dispersive optical effects (CB and LB) but also the corresponding dissipative effects, circular dichroism (CD) and linear dichroism (LD), differences in light absorption. The improved device is the generalized-HAUP (G-HAUP). Not only can it deliver all the linear optical properties of dissymmetric, anisotropic, and absorbing media, but it can also do so in the ultraviolet as well as the visible part of the electromagnetic spectrum. In this review, characteristic features of the G-HAUP and its applications to crystals of photomechanical salicylidenephenylethylamines, alanine, benzil, and magneto-optical CeF3 are described

    MicroRNAs miR-27a and miR-143 Regulate Porcine Adipocyte Lipid Metabolism

    Get PDF
    MicroRNAs (miRNAs) are non-coding small RNAs that play roles in regulating gene expression. Some miRNAs have been classed as epigenetic regulators of metabolism and energy homeostasis. Previous reports indicated that the miRNAs miR-27a and miR-143 were involved in lipid metabolism in human and rodents. To determine the roles of porcine miR-27a and miR-143 in adipocyte lipid metabolism, porcine adipocytes were cultured and allowed to induce differentiation for 10 days. The lipid-filled adipocytes were then transfected with miRNA mimics and inhibitors. We measured how the indicators of adipogenesis and adipolysis in porcine adipocytes were affected by the over-expression and by the inhibition of both miR-27a and miR-143. The results indicated that the over-expression of miR-27a could accelerate adipolysis releasing significantly more glycerol and free fatty acids than the negative control (P < 0.001), while the mimic of miR-143 expression, promoted adipogenesis by accumulating more triglycerides (P < 0.001) in the adipocytes. In addition, we demonstrated that there was good correlation (r > 0.98, P < 0.001) between the indicators of adipolysis in cell lysates and in the culture medium

    The effect of Pt NPs crystallinity and distribution on the photocatalytic activity of Pt-g-C<sub>3</sub>N<sub>4</sub>

    Get PDF
    We thank EPSRC for support through the EPSRC/NSF chemistry programme and the Royal Society for a Wolfson Merit award.Loading of a co-catalyst on the surface of a semiconductor photocatalyst is often carried out without considering the effect of the loading procedure on the final product. The present study looks in detail at the effect that the loading method has on the morphology and final composition of platinum-based nanoparticles by means of XPS and TEM analysis. Additionally, reduction pre-treatments are performed to investigate how the coverage, crystallinity and composition of the NPs affect the photocatalytic H2 evolution. The activity of Pt–g-C3N4 can significantly be enhanced by controlling the properties of the co-catalyst NPs.Publisher PDFPeer reviewe
    corecore