2,673 research outputs found

    A Supersymmetry Model of Leptons

    Get PDF
    If supersymmetry (SUSY) is not for stabilizing the electroweak energy scale, what is it used for in particle physics? We propose that it is for flavor problems. A cyclic family symmetry is introduced. Under the family symmetry, only the τ\tau-lepton is massive due to the vacuum expectation value (VEV) of the Higgs field. This symmetry is broken by a sneutrino VEV which results in the muon mass. The comparatively large sneutrino VEV does not result in a large neutrino mass due to requiring heavy gauginos. SUSY breaks at a high scale 1013\sim 10^{13} GeV. The electroweak energy scale is unnaturally small. No additional global symmetry, like the R-parity, is imposed. Other aspects of the model are discussed.Comment: 10 pages, no figure, revtex

    Energetic radiation and the sulfur chemistry of protostellar envelopes: Submillimeter interferometry of AFGL 2591

    Get PDF
    CONTEXT: The chemistry in the inner few thousand AU of accreting envelopes around young stellar objects is predicted to vary greatly with far-UV and X-ray irradiation by the central star. Aim We search for molecular tracers of high-energy irradiation by the protostar in the hot inner envelope. METHODS: The Submillimeter Array (SMA) has observed the high-mass star forming region AFGL 2591 in lines of CS, SO, HCN, HCN(v2=1), and HC15N with 0.6" resolution at 350 GHz probing radial scales of 600-3500 AU for an assumed distance of 1 kpc. The SMA observations are compared with the predictions of a chemical model fitted to previous single-dish observations. RESULTS: The CS and SO main peaks are extended in space at the FWHM level, as predicted in the model assuming protostellar X-rays. However, the main peak sizes are found smaller than modeled by nearly a factor of 2. On the other hand, the lines of CS, HCN, and HC15N, but not SO and HCN(v2=1), show pedestal emissions at radii of about 3500 AU that are not predicted. All lines except SO show a secondary peak within the approaching outflow cone. A dip or null in the visibilities caused by a sharp decrease in abundance with increasing radius is not observed in CS and only tentatively in SO. CONCLUSIONS: The emission of protostellar X-rays is supported by the good fit of the modeled SO and CS amplitude visibilities including an extended main peak in CS. The broad pedestals can be interpreted by far-UV irradiation in a spherically non-symmetric geometry, possibly comprising outflow walls on scales of 3500 -- 7000 AU. The extended CS and SO main peaks suggest sulfur evaporation near the 100 K temperature radius.Comment: Astronomy and Astrophysics, in pres

    A non-equilibrium ortho-to-para ratio of water in the Orion PDR

    Get PDF
    The ortho-to-para ratio (OPR) of H2_2O is thought to be sensitive to the temperature of water formation. The OPR of H2_2O is thus useful to study the formation mechanism of water. We investigate the OPR of water in the Orion PDR (Photon-dominated region), at the Orion Bar and Orion S positions, using data from {\it Herschel}/HIFI. We detect the ground-state lines of ortho- and para-H2_218^{18}O in the Orion Bar and Orion S and we estimate the column densities using LTE and non-LTE methods. Based on our calculations, the ortho-to-para ratio (OPR) in the Orion Bar is 0.1 - 0.5, which is unexpectedly low given the gas temperature of \sim 85 K, and also lower than the values measured for other interstellar clouds and protoplanetary disks. Toward Orion S, our OPR estimate is below 2. This low OPR at 2 positions in the Orion PDR is inconsistent with gas phase formation and with thermal evaporation from dust grains, but it may be explained by photodesorption

    Deep Learning for Galaxy Mergers in the Galaxy Main Sequence

    Get PDF
    Starburst galaxies are often found to be the result of galaxy mergers. As a result, galaxy mergers are often believed to lie above the galaxy main sequence: the tight correlation between stellar mass and star formation rate. Here, we aim to test this claim. Deep learning techniques are applied to images from the Sloan Digital Sky Survey to provide visual-like classifications for over 340 000 objects between redshifts of 0.005 and 0.1. The aim of this classification is to split the galaxy population into merger and non-merger systems and we are currently achieving an accuracy of 91.5%. Stellar masses and star formation rates are also estimated using panchromatic data for the entire galaxy population. With these preliminary data, the mergers are placed onto the full galaxy main sequence, where we find that merging systems lie across the entire star formation rate - stellar mass plane.Comment: 4 pages, 1 figure. For Proceedings IAU Symposium No. 34

    C2_2H observations toward the Orion Bar

    Get PDF
    C2_2H is one of the first radicals to be detected in the interstellar medium. Its higher rotational transitions have recently become available with the Herschel Space Observatory. We aim to constrain the physical parameters of the C2_2H emitting gas toward the Orion Bar. We analyse the C2_2H line intensities measured toward the Orion Bar CO+^+ Peak and Herschel/HIFI maps of C2_2H, CH, and HCO+^+, and a NANTEN map of [CI]. We interpret the observed C2_2H emission using radiative transfer and PDR models. Five rotational transitions of C2_2H have been detected in the HIFI frequency range toward the CO+^+ peak. A single component rotational diagram gives a rotation temperature of ~64 K and a beam-averaged C2_2H column density of 4×\times1013^{13} cm2^{-2}. The measured transitions cannot be explained by any single parameter model. According to a non-LTE model, most of the C2_2H column density produces the lower-NN C2_2H transitions and traces a warm (TkinT_{\rm{kin}} ~ 100-150 K) and dense (nn(H2_2)~105^5-106^6 cm3^{-3}) gas. A small fraction of the C2_2H column density is required to reproduce the intensity of the highest-NN transitions (NN=9-8 and N=10-9) originating from a high density (nn(H2_2)~5×\times106^6 cm3^{-3}) hot (TkinT_{\rm{kin}} ~ 400 K) gas. The total beam-averaged C2_2H column density in the model is 1014^{14} cm2^{-2}. Both the non-LTE radiative transfer model and a simple PDR model representing the Orion Bar with a plane-parallel slab of gas and dust suggest, that C2_2H cannot be described by a single pressure component, unlike the reactive ion CH+^+, which was previously analysed toward the Orion Bar CO+^+ peak. The physical parameters traced by the higher rotational transitions (NN=6-5,...,10-9) of C2_2H may be consistent with the edges of dense clumps exposed to UV radiation near the ionization front of the Orion Bar.Comment: Proposed for acceptance in A&A, abstract abridge

    Identifying Galaxy Mergers in Observations and Simulations with Deep Learning

    Get PDF
    Mergers are an important aspect of galaxy formation and evolution. We aim to test whether deep learning techniques can be used to reproduce visual classification of observations, physical classification of simulations and highlight any differences between these two classifications. With one of the main difficulties of merger studies being the lack of a truth sample, we can use our method to test biases in visually identified merger catalogues. A convolutional neural network architecture was developed and trained in two ways: one with observations from SDSS and one with simulated galaxies from EAGLE, processed to mimic the SDSS observations. The SDSS images were also classified by the simulation trained network and the EAGLE images classified by the observation trained network. The observationally trained network achieves an accuracy of 91.5% while the simulation trained network achieves 65.2% on the visually classified SDSS and physically classified EAGLE images respectively. Classifying the SDSS images with the simulation trained network was less successful, only achieving an accuracy of 64.6%, while classifying the EAGLE images with the observation network was very poor, achieving an accuracy of only 53.0% with preferential assignment to the non-merger classification. This suggests that most of the simulated mergers do not have conspicuous merger features and visually identified merger catalogues from observations are incomplete and biased towards certain merger types. The networks trained and tested with the same data perform the best, with observations performing better than simulations, a result of the observational sample being biased towards conspicuous mergers. Classifying SDSS observations with the simulation trained network has proven to work, providing tantalizing prospects for using simulation trained networks for galaxy identification in large surveys.Comment: Submitted to A&A, revised after first referee report. 20 pages, 22 figures, 14 tables, 1 appendi

    Temperatures of dust and gas in S~140

    Get PDF
    In dense parts of interstellar clouds (> 10^5 cm^-3), dust & gas are expected to be in thermal equilibrium, being coupled via collisions. However, previous studies have shown that the temperatures of the dust & gas may remain decoupled even at higher densities. We study in detail the temperatures of dust & gas in the photon-dominated region S 140, especially around the deeply embedded infrared sources IRS 1-3 and at the ionization front. We derive the dust temperature and column density by combining Herschel PACS continuum observations with SOFIA observations at 37 μ\mum and SCUBA at 450 μ\mum. We model these observations using greybody fits and the DUSTY radiative transfer code. For the gas part we use RADEX to model the CO 1-0, CO 2-1, 13CO 1-0 and C18O 1-0 emission lines mapped with the IRAM-30m over a 4' field. Around IRS 1-3, we use HIFI observations of single-points and cuts in CO 9-8, 13CO 10-9 and C18O 9-8 to constrain the amount of warm gas, using the best fitting dust model derived with DUSTY as input to the non-local radiative transfer model RATRAN. We find that the gas temperature around the infrared sources varies between 35 and 55K and that the gas is systematically warmer than the dust by ~5-15K despite the high gas density. In addition we observe an increase of the gas temperature from 30-35K in the surrounding up to 40-45K towards the ionization front, most likely due to the UV radiation from the external star. Furthermore, detailed models of the temperature structure close to IRS 1 show that the gas is warmer and/or denser than what we model. Finally, modelling of the dust emission from the sub-mm peak SMM 1 constrains its luminosity to a few ~10^2 Lo. We conclude that the gas heating in the S 140 region is very efficient even at high densities, most likely due to the deep UV penetration from the embedded sources in a clumpy medium and/or oblique shocks.Comment: 15 pages, 23 figures, 4 tables, accepted for publication in A&

    Електронний путівник і координатор (Завдання та функції інформаційного ресурсу Науково-видавничої ради НАН України «Наукові публікації і видавнича діяльність»)

    Get PDF
    Purpose: Physical activity (PA) is an important behavior when it comes to preventing or slowing down disablement caused by aging and chronic diseases. It remains unclear whether PA can directly prevent or reduce disability in activities of daily living (ADL). This article presents a meta-analysis of the association between PA and the incidence and progression of basic ADL disability (BADL). Methods: Electronic literature search and cross-referencing of prospective longitudinal studies of PA and BADL in community dwelling older adults (50+) with baseline and follow-up measurements, multivariate analysis and reporting a point estimate for the association. Results: Compared with a low PA, a medium/high PA level reduced the risk of incident BADL disability by 0.51 (95% CI: 0.38, 0.68; p < 001), based on nine longitudinal studies involving 17,000 participants followed up for 3–10 years. This result was independent of age, length of follow-up, study quality, and differences in demographics, health status, functional limitations, and lifestyle. The risk of progression of BADL disability in older adults with a medium/high PA level compared with those with a low PA level was 0.55 (95% CI: 0.42, 0.71; p < 001), based on four studies involving 8500 participants. Discussion: This is the first meta-analysis to show that being physically active prevents and slows down he disablement process in aging or diseased populations, positioning PA as the most effective preventive trategy in preventing and reducing disability, independence and health care cost in aging societies

    Observation-assisted optimal control of quantum dynamics

    Get PDF
    This paper explores the utility of instantaneous and continuous observations in the optimal control of quantum dynamics. Simulations of the processes are performed on several multilevel quantum systems with the goal of population transfer. Optimal control fields are shown to be capable of cooperating or fighting with observations to achieve a good yield, and the nature of the observations may be optimized to more effectively control the quantum dynamics. Quantum observations also can break dynamical symmetries to increase the controllability of a quantum system. The quantum Zeno and anti-Zeno effects induced by observations are the key operating principles in these processes. The results indicate that quantum observations can be effective tools in the control of quantum dynamics

    Detection of interstellar H_2D^+ emission

    Get PDF
    We report the detection of the 1_{10}-1_{11} ground state transition of ortho-H_2D^+ at 372.421 GHz in emission from the young stellar object NGC 1333 IRAS 4A. Detailed excitation models with a power-law temperature and density structure yield a beam-averaged H_2D^+ abundance of 3 x 10^{-12} with an uncertainty of a factor of two. The line was not detected toward W 33A, GL 2591, and NGC 2264 IRS, in the latter source at a level which is 3-8 times lower than previous observations. The H_2D^+ data provide direct evidence in support of low-temperature chemical models in which H_2D^+ is enhanced by the reaction of H_3^+ and HD. The H_2D^+ enhancement toward NGC 1333 IRAS 4A is also reflected in the high DCO^+/HCO^+ abundance ratio. Simultaneous observations of the N_2H^+ 4-3 line show that its abundance is about 50-100 times lower in NGC 1333 IRAS 4A than in the other sources, suggesting significant depletion of N_2. The N_2H^+ data provide independent lower limits on the H_3^+ abundance which are consistent with the abundances derived from H_2D^+. The corresponding limits on the H_3^+$ column density agree with recent near-infrared absorption measurements of H_3^+ toward W 33A and GL 2591.Comment: Standard AAS LaTeX format (15 pages + 2 figures
    corecore