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ABSTRACT

Context. Mergers are an important aspect of galaxy formation and evolution. With large upcoming surveys, such as Euclid and LSST,
accurate techniques that are fast and efficient are needed to identify galaxy mergers for further study.
Aims. We aim to test whether deep learning techniques can be used to reproduce visual classification of observations, physical clas-
sification of simulations and highlight any differences between these two classifications. As one of the main difficulties of merger
studies is the lack of a truth sample, we can use our method to test biases in visually identified merger catalogues.
Methods. We developed a convolutional neural network architecture and trained it in two ways: one with observations from SDSS
and one with simulated galaxies from EAGLE, processed to mimic the SDSS observations. The SDSS images were also classified by
the simulation trained network and the EAGLE images classified by the observation trained network.
Results. The observationally trained network achieves an accuracy of 91.5% while the simulation trained network achieves 65.2% on
the visually classified SDSS and physically classified EAGLE images respectively. Classifying the SDSS images with the simulation
trained network was less successful, only achieving an accuracy of 64.6%, while classifying the EAGLE images with the observation
network was very poor, achieving an accuracy of only 53.0% with preferential assignment to the non-merger classification. This
suggests that most of the simulated mergers do not have conspicuous merger features and visually identified merger catalogues from
observations are incomplete and biased towards certain merger types.
Conclusions. The networks trained and tested with the same data perform the best, with observations performing better than sim-
ulations, a result of the observational sample being biased towards conspicuous mergers. Classifying SDSS observations with the
simulation trained network has proven to work, providing tantalising prospects for using simulation trained networks for galaxy
identification in large surveys.
Key words. galaxies: interactions – techniques: image processing – methods: data analysis – methods: numerical

1. Introduction
Galaxy-galaxy mergers are of fundamental importance to our
current understanding of how galaxies form and evolve in cold
dark matter cosmology (e.g. Conselice 2014). Dark matter halos
and their baryonic counterparts merge under hierarchical growth
to form the universe that we see today (Somerville & Davé
2015). Mergers play an important role in many aspects of
galaxy evolution such as galaxy mass assembly, morphologi-
cal transformation and growth of the central black hole (e.g.
Johnston et al. 1996; Naab & Burkert 2003; Hopkins et al. 2006;
Bell et al. 2008; Guo & White 2008; Genel et al. 2009). In addi-
tion, galaxy mergers are believed to be the triggering mechanism
of some of the brightest infrared objects known: (ultra) lumi-
nous infrared galaxies (Sanders & Mirabel 1996). With bright
infrared emission often comes high star formation rates (SFRs),
hence a prevailing interpretation from early merger works is that
most mergers go through a starburst phase (e.g. Joseph & Wright
1985; Schweizer 2005).

Recent studies are beginning to dismantle the claim that
all galaxy mergers are starbursts. In a study of 1500 galax-
ies, within 45 Mpc of our own, Knapen et al. (2015) have found
that the increase in SFR in merging galaxies is at most a fac-
tor of two, with the majority of galaxies showing no evidence
of an increase in SFR, or even showing evidence of mergers

quenching the star formation. Galaxy mergers do still cause
starbursts and a higher fraction of starbursts are mergers than
starbursting non-mergers (Luo et al. 2014; Knapen & Cisternas
2015; Cortijo-Ferrero et al. 2017). Claims about the importance
of mergers depend critically on our ability to recognise galaxy
interactions. A method to reliably identify complete merger sam-
ples among a large number of galaxies is clearly needed.

Existing automated techniques for detecting mergers include
selecting close galaxy pairs or selecting morphologically dis-
turbed galaxies. The close pair method finds pairs of galaxies
that are close, both on the sky and in redshift (e.g. Barton et al.
2000; Patton et al. 2002; Lambas et al. 2003; Lin et al. 2004;
De Propris et al. 2005). This method requires highly com-
plete, spectroscopic observations and, as a result, is obser-
vationally expensive. It can also be contaminated by flybys
(Sinha & Holley-Bockelmann 2012; Lang et al. 2014). Selecting
the morphologically disturbed galaxies using quantitative mea-
surements of non-parametric morphological statistics, such as
the Gini coefficient, the second-order moment of the brightest
20 percent of the light (Lotz et al. 2004) and the CAS system
(e.g. Bershady et al. 2000; Conselice et al. 2000, 2003; Wu et al.
2001) aims to detect disturbances such as strong asymmetries,
double nuclei or tidal tails. This method relies on high-quality,
high-resolution imaging to detect these features beyond the local
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universe and has a high percentage of misclassifications (>20%),
especially at high redshift (Huertas-Company et al. 2015). There
is also the option to classify galaxies through visual inspec-
tion. However, visual classifications are hard to reproduce and
are time consuming. Large crowd sourced methods, such as
Galaxy Zoo1 (Lintott et al. 2008), are not scalable to the sizes
of the data sets expected from upcoming surveys. Visual iden-
tification can also suffer from low accuracy and incompleteness
(Huertas-Company et al. 2015).

Deep learning techniques have the potential to revolutionise
galaxy classification. Once properly trained, the neural net-
works used in deep learning can classify thousands of galax-
ies in a fraction of the time it would take a human, or team of
humans, to classify the same objects. The use of deep learn-
ing for galaxy classification was brought to wider attention
after Galaxy Zoo lead a competition on the Kaggle platform2,
known as The Galaxy Challenge, to develop a machine learning
algorithm to replicate the human classification of the Sloan
Digital Sky Survey (SDSS; York et al. 2000) images. This com-
petition was won by Dieleman et al. (2015) using a deep neu-
ral network, the architecture of which has formed the base for
subsequent deep learning algorithms for galaxy classification
(e.g. Huertas-Company et al. 2015; Petrillo et al. 2017). More
recently, deep learning has been applied to SDSS images from
Galaxy Zoo to classify objects as merging or non-merging sys-
tems using transfer learning, that is taking a pre-trained network
and retraining the output layer to classify images into a differ-
ent set of classifications (Ackermann et al. 2018). There has also
been work using deep learning techniques to identifying mergers
and tidal features in optical data from the Canada-France-Hawaii
Telescope Legacy Survey (Gwyn 2012; Walmsley et al. 2019).
These techniques will have an important application in classi-
fying galaxies in large, upcoming surveys, such as the Large
Synoptic Survey Telescope (LSST; LSST Science Collaboration
2009) or Euclid (Laureijs et al. 2011).

In this work, we aim to develop a neural network architec-
ture and independently train it with two different training sets.
This will result in a trained neural network that can identify visu-
ally classified mergers from the SDSS data as well as one that
can identify physically classified mergers from the Evolution
and Assembly of GaLaxies and their Environments (EAGLE)
hydrodynamical cosmological simulation (Schaye et al. 2015).
Once trained, the networks will be cross applied: SDSS images
through the EAGLE trained network and images of simulated
galaxies from EAGLE through the SDSS trained network. Visu-
ally identified merger catalogues constructed from surveys, such
as the SDSS, are biased towards mergers that produce con-
spicuous features but cosmological simulations include a wide
variety of merging galaxies with different mass ratios, gas frac-
tions, environments, orbital parameters etc. Therefore, through
training our neural network separately with visual classifications
of real observations, physical classifications in simulations and
the cross-applications of the two, we can better understand any
potential biases in observations and identify problems in simula-
tions in terms of reproducing realistic merger properties.

The paper is structured as follows: Sect. 2 describes the data
sets used, Sect. 3 covers the neural networks, Sect. 4 provides
the results and discussion and Sect. 5 the concluding remarks.
Where necessary, Wilkinson Microwave Anisotropy Probe year
7 (WMAP7) cosmology (Komatsu et al. 2011; Larson et al.

1 http://www.galaxyzoo.org/
2 https://www.kaggle.com/c/galaxy-zoo-the-galaxy-
challenge

2011) is followed, with ΩM = 0.272, ΩΛ = 0.728 and H0 =
70.4 km s−1 Mpc−1.

2. Image data

2.1. SDSS images

To train the neural network, a large number of images of merg-
ing and non-merging systems are required. For the training the
observational network, we create our merger and non-merger
samples by following Ackermann et al. (2018) and combining
the Darg et al. (2010a,b) merger catalogue with non-merging
systems. The Darg et al. (2010a,b) catalogue contains 3003
merging systems selected by visually rechecking the visual clas-
sifications of all objects from Galaxy Zoo with the fraction of
people who classified the object as merging greater than 0.4 and
spectroscopic redshifts between 0.005 and 0.1. As a result of
this thorough visual classification, the Darg et al. (2010a,b) cat-
alogue is likely to be conservative and mainly contain galaxies
with obvious signs of merger, that is two (or more) clearly inter-
acting galaxies or obviously morphologically disturbed systems,
and may miss more subtle mergers. The SDSS spectra were only
taken for objects with apparent magnitude r < 17.77, or absolute
magnitude r < −20.55 at z = 0.1 hence resulting in an effec-
tive mass limit of ≈1010 M� at z = 0.1 (Darg et al. 2010b). For
the non-merging systems, we generated a catalogue of all SDSS
objects with spectroscopic redshifts in the same range as the
Darg et al. (2010a,b) catalogue and the fraction of people who
classified the object as merging in Galaxy Zoo less than 0.2 and
then randomly selected 3003 of these to form the sample. As we
also require spectroscopic redshifts, the non-merger sample will
have the same effective mass limit of ≈1010 M�.

Cut-outs of the merging and non-merging objects were then
requested from the SDSS jpeg cut-out server for data release 73

(DR7) to create 6006 images with the gri bands as the blue,
green and red colour channels respectively, each of 256 × 256
pixels. SDSS images created this way use a modified version of
the Lupton et al. (2004) non-linear colour normalisation. These
images were then cropped to the centre 64 × 64 pixels for use to
reduce memory requirements while training. Larger image sizes
were tested but showed no clear improvements over 64×64 pixel
images. Examples of the central 64 × 64 pixels of merging and
non-merging SDSS galaxies are given in Fig. 1.

The SFR and stellar mass (M?) for the SDSS objects
were gathered from the MPA-JHU catalogue4; the M? were
created following the techniques of Kauffmann et al. (2003)
and Salim et al. (2007), while the SFR were based on the
Brinchmann et al. (2004) catalogue. The redshifts and ugriz
magnitudes come from the SDSS DR7. Darg et al. (2010b) find
that 54% are major mergers, defined as the ratio of the masses of
the merging galaxies is between 1/3 and 3.

2.2. EAGLE images

For the simulation network, simulated gri images from EAGLE
were used (Crain et al. 2015; McAlpine et al. 2016). These sin-
gle channel images were generated using the py-SPHviewer
code (Benítez-Llambay 2017). EAGLE star particles were
treated as individual simple stellar populations in the imag-
ing, assuming a Chabrier (2003) initial mass function. The
luminosity of particles in each band was obtained using the

3 http://cas.sdss.org/dr7/en/tools/chart/default.asp
4 https://wwwmpa.mpa-garching.mpg.de/SDSS/DR7/
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Fig. 1. Examples of the central 64×64 pixels of SDSS gri, as blue, green
and red respectively, galaxy images, corresponding to an angular size
of 25.3× 25.3 arcsec. Top row: merging galaxies from the Darg et al.
(2010a,b) catalogue while bottom row: non-merging galaxies.

Bruzual & Charlot (2003) population synthesis model via their
zero-age mass, current age and smoothed particle hydrodynamics
metallicity. Particle smoothing lengths were calculated based on
the 64th nearest neighbour, as described in Trayford et al. (2017).
We note that attenuation by dust was not accounted for, with these
primary images functioning as maps of pure stellar emissivity.

To provide enough galaxies to adequately train a neural net-
work, EAGLE galaxies from the simulation snapshots with a
redshift of less than 1.0 were used. Objects with M? greater than
1010 M� were selected while the merging partner of the merg-
ing systems must be larger than 109 M�. The merging partner
must also be more than 10% of the M? of the primary galaxy.
Galaxies were deemed to have merged when they are tracked
as two galaxies in one simulation snapshot and then tracked
as one galaxy in the following snapshot in the EAGLE merger
trees catalogue (Qu et al. 2017). This prevents the inclusion of
chance flybys that may be selected as mergers if the EAGLE
galaxies were selected based on proximity. Systems that are pro-
jected to merge, using a closing velocity extrapolation, within
the next 0.3 Gyr (pre-merger) or are projected to have merged,
again using a closing velocity extrapolation of the progenitors,
within the last 0.25 Gyr (post-merger) were selected, along with
a number of non-merging systems, and gri band images were
created of these systems. Springel et al. (2005) have shown that
the effects of a merger are visible for approximately 0.25 Gyr
after the merger event while the pre-merger stage is much longer.
However, we chose to have the pre and post merger period
approximately equal as tests conducted with longer pre-merger
times showed no improvement, see discussion in Sect. 4.2. We
note, however, that the merger timing may suffer from impre-
cision as a result of the coarse time resolution of the EAGLE
simulation, that is the time between snapshots, which becomes
coarser at lower simulation redshift. Each galaxy was imaged
at an assumed distance of 10 Mpc and each image contains all
material within 100 kpc of the centre of the target galaxy and
is 256 × 256 pixels, where 256 pixels corresponds to a physi-
cal size of 60 kpc. There are 537 pre-merger, 339 post-merger
and 335 non-merging systems, each with six random projections
to increase the size of the training set. Each of the six projec-
tions are treated as individual galaxies resulting in 3222 pre-
merger, 2034 post-merger and 2010 non-merging galaxy images
for training. The pre-mergers and post-mergers were combined
to form the merger class, keeping the pre-merger image if the
same galaxy appears in both sets.

To make the raw EAGLE images look like SDSS images (pro-
cessed EAGLE images), a number of operations were performed.
For each projection of each system, a redshift was randomly

chosen from the redshifts of the objects in the Darg et al. (2010a,b)
catalogue and the surface brightness of the galaxy was corrected to
match this redshift. The image was also re-binned using interpola-
tion with the pythonreprojectpackage (Robitaille 2018) so that
the physical resolution of the EAGLE image matches that physical
resolution of an SDSS galaxy at the selected redshift. The result-
ing apparent r-band magnitudes are less than 17.77 for all but 58 of
the 10 134 galaxy projections, meaning that the brightness of the
simulated galaxies is consistent with the observed SDSS galax-
ies. Once the surface brightness and physical resolution correction
was completed, the observed SDSS point spread functions (PSFs)
for the gri bands were created using the stand alone PSF tool5
and the simulated images were convolved with these PSFs. The
EAGLE galaxies were then injected into real SDSS images to add
realistic noise. Finally, red, green, blue (RGB) images were gener-
ated from the gri bands using a modified Lupton et al. (2004) non-
linear colour normalisation to closely match the way the SDSS
RGB images are made. A brief comparison using a simple lin-
ear colour scaling to generate the EAGLE images is discussed in
Appendix A.

To get real SDSS noise, the position of all known SDSS
objects from DR7 in three SDSS images were collected. The
noise images were generated by offsetting from the position of
the objects in these images by a random distance between 6.329
and 18.986 arcsec (that is between 0.25 and 0.75 times the aver-
age separation of SDSS objects) and with a random angle in the
RA-Dec plane. Then 256×256 pixel cut-outs were made, centred
on these offset positions, and were used as noise in the EAGLE
images. The code used to make the EAGLE images SDSS like
and get the noise cut-outs can be downloaded from GitHub6

while examples of the raw and processed EAGLE images can
be found in Fig. 2.

The M?, SFR, ugriz absolute magnitudes, galaxy asymmetry,
merger mass ratio and time to or since the merger event of the
EAGLE galaxies are from the simulation. For the merging sys-
tems, M? and SFR are calculated for the merger remnant. The
galaxy asymmetry is the 3D asymmetry and was calculated as
described in Trayford et al. (2019). Uniform bins of solid angle
were created about the galaxy centre and the M? within each
bin is summed. The asymmetry is then the sum of the absolute
mass difference between diametrically opposed bins divided by
the total M?. Thus, the higher the asymmetry value, the more
asymmetric the galaxy is. The minority of the EAGLE galaxies,
34%, are major mergers: the ratio of the masses of the major
mergers is between 1/3 and 3.

3. Deep learning

3.1. Convolutional neural networks

Deep learning neural networks are a type of machine learning
that aim to loosely mimic how a biological system processes
information by using a series of layers of non-linear mathematic
operations, known as neurons, each with its own weight and bias
value. Here we use a type of deep learning known as convolu-
tional neural networks (CNN). The lower layers of a CNN are
known as convolutional layers and contain a defined number of
kernels that are convolved with the output of the layer below.
The kernels are groups of neurons that have a shape smaller in
width and height than the input so must move across the input,
performing the necessary matrix multiplications on the region of
the input they cover at each step. The higher layers of a CNN are
5 https://www.sdss.org/dr12/algorithms/read_psf/
6 https://github.com/wjpearson/SDSS-EAGLE-mergers
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Fig. 2. Examples of the raw (first and third rows, linear colour scaling)
and processed (second and fourth rows, Lupton et al. (2004) non-linear
colour scaling) EAGLE images for merging (first and second rows) and
non-merging (third and fourth rows) systems. The raw images shown
are 128 × 128 pixels and imaged at 10 Mpc, corresponding to a physi-
cal size of 30 × 30 kpc or an angular size of 621 × 621 arcsec, while
the processed images are 64 × 64 pixel images corresponding to an
angular size of 25.3 × 25.3 arcsec. The redshifts are those that the
EAGLE images have been projected to.

one-dimensional and fully connected, that is all the neurons are
connected to all the neurons in the layer below. Dimensionality
of the network can be reduced by applying pooling layers. This
type of layer groups inputs into it and passes on the maximum or
average value of each group to the next layer. When placed after
an image input or a convolution layer, this grouping is done in
the 2-dimensional height-width plane and not the depth/colour
direction resulting in a reduction in the spatial size but not the
depth. Each neuron in the kernels or fully connected layers of a
network has an activation function to scale the result to pass to
higher layers or force the output to a certain value, depending on
the value passed into the activation function and the activation
function used. The weights and biases in the neurons are trained
by passing a large number of classified images through the net-
work, in the case of supervised learning used here, such that
the output classifications converge on the known input classifica-
tions. A thorough description of how CNNs work is beyond the
scope of this paper; further information on CNNs can be found
in Lecun et al. (1998).

When discussing neural networks, some terms are used
whose definitions may differ from what is expected or be unfa-
miliar. Also, concepts have a number of different names. To pre-
vent confusion, terms used in this paper are defined in Table 1,
taking a positive result to mean a merger and a negative result to
mean a non-merger.

3.2. Architecture

The CNN used in this work was built using the Tensorflow
framework (Abadi et al. 2015). As the task we are attempting to
complete is similar to that of The Galaxy Challenge, we based
our network on the winning Dieleman et al. (2015) architecture

but apply some tweaks. The input image was 64 by 64 pix-
els with three colour channels. We then applied a series of
four, two dimensional convolutional layers with 32, 64, 128
and 128 kernels of 6 × 6, 5× 5, 3× 3 and 3× 3 pixels for the
first, second, third and fourth layers respectively. The strides of
the kernels, how far the kernel is moved as it scans the input,
was set at 1 pixel for all layers and the zero padding was set
to “same” to pad each edge of the image with zeros evenly
(if required). Batch normalisation (Ioffe & Szegedy 2015) was
applied after each layer, scaling the output between zero and one,
and we used rectified linear units (ReLU; Nair & Hinton 2010)
for activation. ReLU returns max(x, 0) when passed x. Dropout
(Srivastava et al. 2014) was also applied after each activation,
to help reduce overfitting, with a dropout rate of 0.2, randomly
setting the output of neurons to zero 20% of the time during
training. The output from the first, second and fourth convolu-
tional layers had a 2× 2 pixel max-pooling applied to reduce
dimensionality. After the fourth convolutional layer, we used two
one-dimensional, fully connected layers of 2048 neurons, again
applying ReLU activation, batch normalisation and dropout. The
output layer has two neurons7, one for each class, and uses a soft-
max output. For training, validation and testing samples with an
equal number of each class, as done here, softmax output pro-
vides probabilities for each class, in the interval [0, 1], that sum
to one, that is softmax maps the un-normalised input into it into a
probability distribution over the output classes. Thus there is one
output that can be considered the probability the input image is
of a merging system and one output that can be considered to be
the probability the input image is of a non-merging galaxy. In
this paper, we will use the output for the merger class, although
with our binary classification the non-merger class can be con-
sidered equivalent as it is 1-(merger class output). The full net-
work can be seen in Table 2. Loss of the network was determined
using softmax cross entropy and was optimised using the Adam
algorithm (Kingma & Ba 2015). A learning rate, that is how fast
the weights and biases in the network can change, of 5 × 10−5

was used as it resulted in a more accurate network.

3.3. Training, validation and testing

If there were an unequal number of images in the two classes,
the larger class size was reduced by randomly removing images
until the classes are the same size. The images were then sub-
divided into three groups: 80% were used for training, 10% for
validation and 10% for testing. The training set was the set used
to train the network while the validation was used to see how
well the network was performing as training progressed. Each
network was trained for 200 epochs, an epoch is showing each
image to the network once, and the epoch with simultaneously
the highest accuracy and lowest loss with the validation set was
selected for use. Using 200 epochs was long enough as by this
point the loss for the validation set had begun to increase as the
network starts to over-train and learn the training set, not the
features in the training set. The testing set was used once, and
once only, to test the performance of the network deemed to
be the best from the validation. Testing images were not used
for validation to prevent accidental training on the test data set.
To reduce sensitivity to galaxy orientation, the images were also
augmented as they were loaded for training (and only training):
the images were randomly rotated by 0◦, 90◦, 180◦ or 270◦. We
also cropped the images to the centre 64× 64 pixels and scale

7 It is possible to do this with a single output but this setup makes it
easier to add more classes in the future.

A49, page 4 of 18

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935355&pdf_id=2


W. J. Pearson et al.: Identifying galaxy mergers in observations and simulations with deep learning

Table 1. Terms used when describing the performance of neural networks.

Term Definition

Positive (P) An object classified in the catalogues or identified by
a network as a merger.

Negative (N) An object classified in the catalogues or identified by
a network as a non-merger.

True positive (TP) An object classified in the catalogues as a merger that
is identified by a network as a merger.

False positive (FP) An object classified in the catalogues as a non-merger
that is identified by a network as a merger.

True negative (TN) An object classified in the catalogues as a non-merger
that is identified by a network as a non-merger.

False negative (FN) An object classified in the catalogues as a merger that
is identified by a network as a non-merger.

Recall Fraction of objects correctly identified by a network
as a merger with respect to the total number of objects
classified in the catalogues as mergers.

TP / (TP+FN)

Fall-out Fraction of objects incorrectly identified by a network
as a merger with respect to the total number of objects
classified in the catalogues as mergers.

FP / (TP+FN)

Specificity Fraction of objects correctly identified by a network
as a non-merger with respect to the total number of
objects classified in the catalogues as non-mergers.

TN / (TN+FP)

Precision Fraction of objects correctly identified by a network
as a merger with respect to the total number of objects
identified by a network as a merger.

TP / (TP+FP)

Negative predictive value (NPV) Fraction of objects correctly identified by a network
as a non-merger with respect to the total number of
objects identified by a network as a non-merger.

TN / (TN+FN)

Accuracy Fraction of objects, both merger and non-merger, cor-
rectly identified by a network.

(TP+TN) / (TP+FP+TN+FN)

the images globally between zero and one, preserving the rela-
tive flux densities. The code used to create, train, validate and
test the networks can be downloaded from GitHub8.

4. Results and discussion

We used the receiver operating characteristic (ROC) curve to
determine how well the network has performed for a binary clas-
sification. The ROC curve is a plot of the recall against fall-out
(see Table 1 for definitions) with each point along the curve cor-
responding to a different value for the output (threshold) above
which an input image is considered to be of a merging system.
Higher recall and lower fall-out means a better threshold while
the (0,0) and (1,1) positions correspond to assigning all objects
to the non-merger and merger classes respectively. The threshold
with recall and fall-out closest to the (1,0) position, calculated as
least squared difference, is the preferred threshold for splitting
mergers from non-mergers. Also, the area under the ROC curve
is unity for an infallible network, and close to unity for good
networks, while a truly random network will have an area of 0.5.

The two-sample Kolmogorov–Smirnov test (KS-test;
Smirnov 1939) is also used to compare the distributions of cor-
rectly and incorrectly identified objects to see if they are likely
sampled from the same distribution. The null hypothesis that
the two distributions are the same is rejected at level α = 0.05 if

the KS-test statistic, DN,M , is greater than CritN,M = c(α)
√

n+m
nm ,

8 https://github.com/wjpearson/SDSS-EAGLE-mergers

where c(α) = 1.224 for α = 0.05 and n and m are the sizes of
samples N and M.

4.1. Observation trained network

The 97th epoch of the network trained with SDSS images (obser-
vation network) was used. This epoch has an accuracy (see
Table 1 for definition) at validation of 0.932 cutting at a thresh-
old of 0.5 to separate mergers from non-merger classification.
Using the validation set, we plot the ROC curve for this net-
work in blue in Fig. 3. This has an area of 0.966 and provides
an ideal cut threshold of 0.57. At this threshold, the accuracy of
the validation set increases to 0.935. To determine the true accu-
racy of the network, we perform the same analysis for the test
data set. The area under the ROC curve, shown in Fig. 3 in yel-
low, remains constant at 0.966. With the threshold set at 0.57,
the final accuracy of the network is 0.915, with recall, precision,
specificity and NPV of 0.920, 0.911, 0.910 and 0.919 respec-
tively (see Table 1 for definitions). It is possible to increase the
accuracy, and other cut dependent statistics, by changing the cut
threshold for the training set. However, this risks accidentally
using the test set for training and thus not giving a true represen-
tation of the network.

Our results can be compared to those of Ackermann et al.
(2018), who performed a similar study using the same Darg et al.
(2010a,b) merger catalogue. Ackermann et al. (2018) have a recall
of 0.96, a precision of 0.97 and the area under the ROC curve
is 0.9922. All these values are slightly larger than those we
find, demonstrating that their network performs somewhat better.
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Table 2. Architecture of the CNN.

Layer Properties

Input 64× 64 pixels 3 channels
Convolutional 32, 6× 6 pixel kernels 1 pixel stride Same padding Batch normalisation ReLU activation
Dropout Dropout rate of 0.2
MaxPooling 2× 2 pixel 2 pixel stride
Convolutional 64, 5× 5 pixel kernels 1 pixel stride Same padding Batch normalisation ReLU activation
Dropout Dropout rate of 0.2
MaxPooling 2× 2 pixel 2 pixel stride
Convolutional 128, 3× 3 pixel kernels 1 pixel stride Same padding Batch normalisation ReLU activation
Dropout Dropout rate of 0.2
Convolutional 128, 3× 3 pixel kernels 1 pixel stride Same padding Batch normalisation ReLU activation
Dropout Dropout rate of 0.2
MaxPooling 2× 2 pixel 2 pixel stride
Flatten
Fully connected 2048 neurons Batch normalisation ReLU activation
Dropout Dropout rate of 0.2
Fully connected 2048 neurons Batch normalisation ReLU activation
Dropout Dropout rate of 0.2
Output 2 neurons Softmax activation

Notes. The first column in the type of layer while the second column contains the associated properties. The input is a 64× 64 pixel, three channel
image and the output is two probabilities, one for the probability the input is a merger and one for the probability the input is a non-merger. Further
details on what the properties of the layers mean can be found in Sect. 3.2.

Fig. 3. ROC curve for the observation network used on visually clas-
sified SDSS images at validation (blue) and testing (yellow). The area
under each curve is 0.966. The dashed red line shows the position of a
truly random network.

However, there are some differences between the two studies.
The architecture of the CNN used here is different from that
used by Ackermann et al. (2018), who use the Xception architec-
ture (Chollet 2017), and they perform transfer learning: using a
network pre-trained on the non-astronomical ImageNet images
(Deng et al. 2009) and then continuing to train using the merger
and non-merger images. The non-merger set is also different,
with Ackermann et al. (2018) using 10 000 non-merging galax-
ies as opposed to our 3003. We use an equal number of mergers
and non-mergers to prevent accidental bias against the class with
fewer images. Finally, the Ackermann et al. (2018) study does not
change the cut threshold from 0.5 to improve the recall or preci-
sion, suggesting that these values may be able to be improved.

Another study, by Walmsley et al. (2019), trains a CNN on
data from the Canada-France-Hawaii Telescope Legacy Survey
(CFHTLS; Gwyn 2012). Here, they aim to identify galaxies with

tidal features, which are likely due to galaxy interactions. The
performance of our SDSS trained network is much better than
that of the CFHTLS network: we achieve recall of 0.920 while
Walmsley et al. (2019) achieve 0.760. However, the differences in
data set and network architecture will have an effect on the results.

To determine if certain physical properties of the galaxies
are the cause of the misclassification, the specific SFR (SFR/M?,
sSFR), M?, redshift and ugriz band magnitudes of the misclas-
sified objects have been compared to their correctly classified
counterparts. This will allow us to determine if, for example, all
of the high mass, non-mergers have been classified as mergers.
There are no trends in any of these properties: the distribution of
the misclassified objects is the same as the distribution for the
correctly classified objects. The confusion matrix, showing the
number of TP, FP, TN and FN, for the SDSS images classified
by the observation network can be found in Table 3 while the
KS-test statistics comparing the distributions of correctly and
incorrectly identified galaxies with the physical properties can
be found in Table 4. See Table 1 for definitions of TP, FP, TN
and FN.

The images of the misclassified objects have also been visu-
ally inspected. Over half of the FP objects (16 of 27) have a close
chance projection or a second galaxy projected into the disc of
the primary galaxy, possibly fooling the network into believing
that the two galaxies are merging. Four further galaxies fill the
entire 64× 64 pixel image, two of which also have a chance pro-
jection of a second galaxy into the disc of the primary galaxy.
For six of the FP, there is no clear reason why they are mis-
classified: they appear to be isolated galaxies without signs of
morphological disturbance. The final FP is a large grand design
spiral that has been identified off centre in the original 256× 256
pixel image. When cropped, the image contains only the arms of
the spiral that appear like a disturbed system. Examples of the
FP are shown in Figs. 4a–d. However, and unsurprisingly with
so few misclassified objects, galaxies that are visually similar to
the FP have also been correctly identified, as seen in Figs. 4e–h.

For the FN objects, six of the 24 have a merging compan-
ion that is either outside the 64× 64 pixel image or on the very
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Table 3. Confusion matrix for SDSS images classified by the observa-
tion network.

Network Classification
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Merger Non-merger Total

M
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276 TP 24 FN 300
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27 FP 273 TN 300

Total 303 297

Table 4. KS-test statistic, DN,M , and the critical value, CritN,M =

c(α)
√

n+m
nm , for the SDSS images classified by the observation network.

Physical
Parameter DTP,FN CritTP,FN DTN,FP CritTN,FP

M? 0.144 0.261 0.091 0.247
sSFR 0.203 0.261 0.141 0.247
u-magnitude 0.190 0.260 0.195 0.247
g-magnitude 0.324 0.260 0.168 0.247
r-magnitude 0.236 0.260 0.178 0.247
i-magnitude 0.196 0.260 0.193 0.247
z-magnitude 0.199 0.260 0.197 0.247

Notes. If DN,M > CritN,M , the null hypothesis that the two distributions
are the same is rejected at level α = 0.05. Here, c(α) = 1.224 for α =
0.05 and n and m are the sizes of samples N and M.

edge, indicating that a larger image may reduce the FP rate. The
remaining images show a clear morphological disturbance or a
clear merger companion. It is possible that these companions
are being identified by the network as chance projections, espe-
cially the companions that are almost point-like in the image.
Examples of the FN are shown in Figs. 5a–d. As with the FP
objects, there are also example TP that are visually similar to the
FN galaxies, presented in Figs. 5e–h.

4.2. Simulation trained network

The 26th epoch of the network trained with EAGLE images
(simulation network) was used. This epoch has an accuracy of
0.672 at validation, cutting at a threshold of 0.5 to separate merg-
ers from non-merger classification. Using the validation set, we
plot the ROC curve for this network in dot-dashed yellow in
Fig. 6. This has an area of 0.710 and provides an ideal cut thresh-
old of 0.46. At this threshold, the accuracy of the validation set
decreases to 0.644. To determine the true accuracy of the net-
work, we perform the same analysis for the test data set. The
area under the ROC curve, the dot-dashed orange curve in Fig. 6,
increases to 0.726. With the threshold set at 0.46, the final accu-
racy of the network is 0.674, with recall, precision, specificity
and NPV of 0.657, 0.680, 0.692 and 0.668 respectively.

The lower accuracy of the simulation trained network rela-
tive to the observation trained network (discussed in Sect. 4.1)
is a result of the difference in the training sample. The SDSS
merger sample has been thoroughly checked to verify there are

Fig. 4. Examples of FP galaxies from the observation network for (a)
a chance projection, (b) a galaxy filling the image, (c) a galaxy filling
the image with a chance projection and (d) an isolated, non-interacting
galaxy. Panels e to h: TN galaxies that are visually similar to those
shown in (a) to (d).

Fig. 5. Examples of FN galaxies from the observation network for (a) a
galaxy with its merging companion outside the image, (b) a galaxy with
its merging companion on the edge of the image, (c) a merging system
and (d) a merging system where the minor galaxy is almost point-like.
Panels e to h: TP galaxies that are visually similar to those shown in (a)
to (d).

visible indications of a merger, as can been seen in the exam-
ples in Fig. 1. The EAGLE merger sample, however, contains
physically classified mergers in the simulation without visual
inspection to check whether there are any obvious signs of
merging. As such, the EAGLE merger sample includes a wide
variety of merger types (in terms of their mass ratios, orbital
parameters, gas fractions, etc.) and hence some of the merg-
ers are bound to have inconspicuous merging signs and will
therefore be harder to discern, resulting in a lower accuracy.
We have checked the merging galaxies misclassified by the net-
work visually and confirm that most EAGLE mergers are indeed
not as conspicuous as the ones in the SDSS catalogue, where
the mergers from Darg et al. (2010a,b) have been selected to be
conspicuous.

If the time before and after the merger event is decreased, the
accuracy of the network increases. Performing the same analysis
as with the full EAGLE data set, we find that using galaxies that
are within 200 Myr of the merger event results in a network that
has a test accuracy of 0.644 at a cut threshold of 0.40 in the
31st epoch. Using galaxies that are within 100 Myr of the merger
event the network as a test accuracy of 0.652 at a cut threshold of
0.39 in the 52nd epoch. The full statistics for these two networks
can be found in Table 5 and the ROC curves can be found in
Fig. 6. As the 100 Myr network has the largest area under the
ROC curve, the majority of the remainder of the paper will now
focus on the 100 Myr network when discussing the simulation
network. The confusion matrix for the 100 Myr network can be
found in Table 6.
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Fig. 6. ROC curve for the simulation networks at validation (purple,
light blue, yellow) and testing (bark blue, green, orange) for 100 Myr
(solid), 200 Myr (dashed) and 300 Myr (dot-dashed) from the merger
event. The areas under the curves can be found in Table 5. The dashed
red line shows the position of a truly random network.

Table 5. Statistics for the SDSS and the 100 Myr, 200 Myr and 300 Myr
EAGLE trained networks at testing.

SDSS 100 Myr 200 Myr 300 Myr

Epoch used 97 52 31 26
Cut threshold 0.57 0.39 0.40 0.46
ROC area 0.966 0.787 0.704 0.726
Recall 0.920 0.632 0.562 0.657
Precision 0.911 0.658 0.673 0.680
Specificity 0.910 0.672 0.726 0.692
NPV 0.919 0.646 0.624 0.668
Accuracy 0.915 0.652 0.644 0.674

A similar study has been performed by Snyder et al. (2019)
using simulated galaxy images from the Illustris simulation
(Vogelsberger et al. 2014), although their technique is somewhat
different. In their study, Snyder et al. (2019) train Random
Forests using non-parametric morphology statistics, such as
concentration, asymmetry, Gini and M20, as inputs, with these
statistics derived from Illustris galaxies processed to look like
Hubble Space Telescope images. They select galaxies that will,
or have, merge within 250 Gyr. The recall of Snyder et al. (2019)
is slightly higher than this work, they achieve ≈0.70 compared
to our 0.632, but their precision is much lower, at ≈0.30 com-
pared to 0.658. Comparing the Snyder et al. (2019) results to our
300 Myr trained network, a more fair comparison, shows similar
results: Snyder et al. (2019) has higher recall, ≈0.70 compared
to 0.657, but lower precision, ≈0.30 compared to 0.680.

As the galaxies are generated from a simulation, we know the
physical properties of these systems. As with the SDSS objects,
we can compare the physical properties of the galaxies that are
correctly and incorrectly identified. KS-test statistics comparing
the distributions of correctly and incorrectly identified galaxies
with the physical properties can be found in Table 7.

Many FN objects appear to have low simulation snapshot
redshifts when compared to the TP, see Fig. 7a, potentially a
result of coarser time resolution of the simulation at low red-
shift. We note that the simulation snapshot redshift is different
from the redshift used when making the EAGLE galaxies look

Table 6. Confusion matrix for EAGLE images classified by the simula-
tion network.
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Total 193 209

Table 7. KS-test statistic, DN,M , and the critical value, CritN,M =

c(α)
√

n+m
nm , for the EAGLE images classified by the simulation network.

Physical
parameter DTP,FN CritTP,FN DTN,FP CritTN,FP

Projection 0.102 0.179 0.162 0.184
Redshift
Simulation 0.272 0.179 0.260 0.184
Redshift
Asymmetry 0.225 0.179 0.232 0.184
Time since 0.123 0.179 – –
Merger
u-magnitude 0.286 0.179 0.120 0.184
g-magnitude 0.259 0.179 0.075 0.184
r-magnitude 0.222 0.179 0.068 0.184
i-magnitude 0.216 0.179 0.065 0.184
z-magnitude 0.201 0.179 0.072 0.184
Mass ratio 0.164 0.179 – –
M? 0.225 0.179 0.205 0.184
sSFR 0.338 0.179 0.207 0.191

Notes. If DN,M > CritN,M , the null hypothesis that the two distributions
are the same is rejected at level α = 0.05. Here, c(α) = 1.224 for α =
0.05 and n and m are the sizes of samples N and M.

like SDSS images. For the TN and FP populations, higher snap-
shot redshifts have a higher fraction of FP sources relative to
the TN, see Fig. 7b. This suggests that simulated non-mergers in
the local universe look different from simulated non-mergers in
the higher-z universe.

The asymmetry of the non-merger population also has an
effect: non-merging objects with higher asymmetry are prefer-
entially being identified as merging systems. It is worth noting
that the time to/from the merger event does not appear directly
correlated with the asymmetry of the galaxy.

In M?, there is a slight trend for the low mass, merging sys-
tems to be identified as non-mergers, although the non-merging
galaxies are typically slightly lower mass than the merging sys-
tems so this is not overly unexpected. For sSFR, there is a
splitting, with low sSFR merging systems being preferentially
assigned the non-merger classification and the high sSFR non-
merging galaxies preferentially identified as mergers, as shown
in Fig. 8.
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Fig. 7. Distributions for the correctly (blue) and incorrectly (orange)
identified EAGLE objects in the simulation network for (a) mergers and
(b) non-mergers as a function of simulation snapshot redshift. Merg-
ing objects with low snapshot redshifts are disproportionally assigned a
non-merger classification while non-merging objects with high simula-
tion redshifts are often seen as mergers.

The apparent magnitude of the simulated galaxy after red-
shift projection has the largest effect, compared to the other
parameters investigated, on the correct identification. For the
merging systems, faint objects are preferentially classified as
non-merging systems while the bright non-mergers are more
likely to be misclassified as mergers. An example of this in the
g-band is presented in Fig. 9. Misclassification for the merging
systems is likely a result of the merging systems being brighter,
on average, than the non-merger systems while the majority of
the merging systems are fainter, hence the high misclassification
rate for non-merging systems at these magnitudes.

As with the SDSS images, the misclassified EAGLE images
have also been visually inspected. The majority of the FP galax-
ies, 43 of 66, contain a chance projection generated when the
real SDSS noise is added. Three FP galaxies have a projected
galaxy that is much brighter than the EAGLE galaxy, resulting
in the EAGLE galaxy becoming extremely faint in the image
and (almost) impossible to see by eye. There are also correctly
identified galaxies that also suffer from the same image sup-
pression, suggesting that this issue is not the sole cause of the
misclassification. Of the remaining FP, three are at a low pro-
jection redshift, resulting in the features and inhomogeneities of
the galaxy appearing as morphological disturbances, although,
again, there are examples of these low projection redshift galax-
ies that have been correctly identified as non-merging. The other
objects show no signs of asymmetry or morphological distur-
bances. Examples of these galaxies can be found in Figs. 10a–d

Fig. 8. Distribution of EAGLE galaxies from the simulation network
of the correctly (green) and incorrectly (brown) mergers (a) and non-
mergers (b) as a function of EAGLE sSFR. Merging galaxies with low
sSFR are often misclassified as non-merging while high sSFR non-
mergers are often identified as mergers.

while example TN galaxies that are visually similar can be found
in Figs. 10e–h.

For the FN objects, nine of the 74 have a bright chance pro-
jection from the added SDSS noise that results in the EAGLE
galaxy becoming (almost) impossible to see in the image. As
these types of images are present in the FN, FP, TP and TN, it is
unlikely that the bright counterpart is causing the misclassifica-
tions. 21 FNs do not appear morphologically disturbed or asym-
metric. This is likely a result of the PSF convolution and redshift
re-projection smoothing out the visual merger indicators result-
ing in what appears to be a single, smooth galaxy. The remain-
ing objects do have clearly identifiable merger counterparts or
asymmetry. Examples of these galaxies can be found in
Figs. 11a–d. As with the EAGLE FP, Figs. 11e–h show there are
also examples of visually similar galaxies that have been cor-
rectly identified by the simulation network.

The CNN architecture was also trained on simulation images
that had only been partially processed to look like SDSS images.
This will allow us to determine if there is a specific part of the
process that results in the lower accuracy for the simulation net-
work with respect to the observation network. For this, we use
EAGLE galaxies that are within 100 Myr of the merger event and
perform one of the following processes: convolve the EAGLE
image with the SDSS PSF (C), inject the EAGLE image into
the real SDSS noise (N), match the EAGLE resolution to that
of the SDSS images (R), adjust the EAGLE magnitude to be
the correct apparent magnitude for a chosen redshift (Z) or a
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Fig. 9. Distributions for the correctly (purple) and incorrectly (yellow)
identified objects for (a) mergers and (b) non-mergers as a function
of g-band magnitude for EAGLE galaxies classified by the simula-
tion network. Faint mergers are preferentially classified as non-mergers
while the distribution of misclassified non-mergers is at intermediate
magnitudes.

Fig. 10. Examples of FP EAGLE galaxies from the simulation network
for (a) a chance projection, (b) a galaxy where the chance projection
from the SDSS noise has resulted in the EAGLE galaxy appearing faint
in the image, (c) a galaxy at low projection redshift and (d) an isolated,
non-interacting galaxy. Panels e to h: TN galaxies that are visually sim-
ilar to those shown in (a) to (d).

combination of three (CNR, CNZ, CRZ, NRZ). We also train the
network on the EAGLE images that have not been processed. As
with training with SDSS or fully processed EAGLE images, the
epoch with simultaneously the lowest validation loss and accu-
racy is chosen and the cut threshold with fall-out and recall closet
to (0,1) is used. The statistics are then calculated for the test
set and are presented in Table 8. Individually, C and N do not

Fig. 11. Examples of FN EAGLE galaxies from the simulation network
for (a) a galaxy where the chance projection from the SDSS noise has
resulted in the EAGLE galaxy appearing faint in the image, (b) a merg-
ing system that appears as a single, smooth galaxy, (c) a galaxy with a
clearly identifiable counterpart and (d) as asymmetric galaxy. Panels e
to h: TP galaxies that are visually similar to those shown in (a) to (d).

notably change the accuracy of the trained network, remaining
within one percentage point of the accuracy of the un-processed
EAGLE images (87%). R and Z both cause a small reduction
in the accuracy, reducing it to 82%, along with the combination
of CNR. CNZ, CRZ and NRZ all show more significant reduc-
tions. Of these three, CRZ has the smallest effect, reducing accu-
racy to 78%, while the combinations CNZ and NRZ reduce the
accuracy to 72% and 68% respectively. This suggests that cor-
recting the apparent magnitude has the largest affect, especially
when coupled with the inclusion of back ground noise. This is
possibly because when changing from absolute to apparent mag-
nitude, the fainter objects are becoming harder to discern from
the background when injected into the real SDSS noise. We note,
however, that only 58 of the original 10 134 processed EAGLE
images have an apparent r-band magnitude greater than the limit
applied to the SDSS images.

4.3. Cross application of the networks

Here we passed the images through the other network, that is we
passed all 6006 SDSS images through the simulation network
and all 4020 EAGLE images through the observation network.
For this, we used the same cut threshold as for passing through
the “correct” images. This was done so that we can understand
any biases and incompleteness in the two data sets. For exam-
ple, the visually classified mergers from the SDSS data consist
only of certain types of mergers with conspicuous merging signs,
such as two massive galaxies obviously interacting with strong
tidal features. However, the EAGLE simulation contains a much
more complete merger sample. So, one would expect the neural
network trained with the visually classified SDSS merger sam-
ple to perform poorly on simulated images of EAGLE mergers.
We also perform the cross application so that any SDSS objects
classified as merging systems in the visual classification but not
identified by the simulation trained network can be identified and
help improve our understanding of the limitations of simulations
so that they become more representative of the real universe in
future developments.

4.3.1. EAGLE images through the observation network

Passing all the EAGLE images through the observation network
resulted in an accuracy of 0.530, only slightly better than ran-
dom assignment of objects at first glance. Precision and NPV are
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Table 8. Statistics for the network trained with partially processed EAGLE images at testing.

Processing None C N R Z CNR CNZ CRZ NRZ

Epoch used 183 167 191 135 116 167 43 145 36
Cut threshold 0.47 0.48 0.42 0.45 0.47 0.48 0.40 0.50 0.43
ROC area 0.943 0.948 0.933 0.903 0.893 0.911 0.803 0.866 0.763
Recall 0.841 0.841 0.866 0.786 0.791 0.776 0.692 0.667 0.657
Precision 0.904 0.889 0.888 0.845 0.846 0.867 0.735 0.859 0.688
Specificity 0.910 0.896 0.891 0.856 0.856 0.881 0.751 0.889 0.701
NPV 0.851 0.849 0.869 0.800 0.804 0.797 0.709 0.725 0.671
Accuracy 0.876 0.868 0.866 0.821 0.823 0.828 0.721 0.778 0.679

Notes. C is convolving the EAGLE image with the SDSS PSF, N is injecting the EAGLE image into the real SDSS noise, R is matching the
EAGLE resolution to that of SDSS and Z is changing the EAGLE magnitude to apparent from absolute.

similarly close to random at 0.541 and 0.523. However, recall is
low, at 0.387, and the specificity is high, at 0.673, demonstrating
that the network preferentially assigns objects to the non-merger
class but with each class containing just over half correctly iden-
tified objects. As to be expected, the area under the ROC curve
is close to 0.5 at 0.502, depicted in yellow in Fig. 12. The confu-
sion matrix can be found in Table 9.

As before, the physical properties of the EAGLE images can
be examined to determine if they are affecting the classification
by the network, a brief summary of which can be seen in the KS-
test results in Table 10. One property that has an obvious split-
ting between correct and incorrect assignment is the redshift of
projection. As is evident in Fig. 13, objects with high projection
redshifts are preferentially being classified as non-merger sys-
tems, see Fig. 13a, while objects with low projected redshifts are
classified as merging systems, see Fig. 13b. The distribution of
redshifts used to re-project the EAGLE galaxies is nearly identi-
cal to the SDSS distribution: the redshifts used to re-project the
galaxies were drawn randomly from the redshifts of the SDSS
observations. Thus this effect is not a result of a mismatch in
the redshift distributions between observations and simulations.
The issue of misclassified mergers at high redshift may arise
while matching the physical resolution (that is kpc per pixel)
of the EAGLE images to the SDSS images. At high redshift,
this could result in a loss of finer detail that would be expected
in merging systems, resulting in these systems being classified
as non-mergers. The main misclassification of non-merging sys-
tems happens at low projection redshift. The physical resolution
of EAGLE images matches the physical resolution of the SDSS
images at z ≈ 0.03. Objects assigned a redshift lower than this
value are increased in physical resolution using a bicubic inter-
polation. This interpolation may result in the creation of artefacts
that appear, to the CNN, like features of merging systems. Alter-
natively, it is possible that at low redshifts the individual particles
of the simulation are detectably disturbing the light profile of the
galaxies and resulting in misclassification.

There is also a trend with the mass ratio of the merging sys-
tems. Although the TP and FN do not split into two distinct
distributions, the low mass ratio merger systems, that is major
mergers, are more often misclassified as non-merging galaxies.
This is the opposite to what would be expected: minor mergers
would be expected to be misclassified more often as the distur-
bances from the smaller galaxy would be expected to be less
obvious. Similarly, low mass mergers have a slight preference to
be assigned the non-merger class and vice versa, although again
this is unsurprising as the merger sample is typically higher mass
than the non-merger sample for the EAGLE galaxies. The mass
ranges for the EAGLE and SDSS data are not quite comparable:

Fig. 12. ROC curve for the SDSS images classified by the simulation
network (blue) and the EAGLE images classified by the observation
network (yellow). The area under the EAGLE through observation net-
work is 0.502 while the area under the SDSS through simulation net-
work is 0.689. The dashed red line shows the position of a truly random
network.

while the SDSS data has an effective mass limit of 1010 M� at
z = 0.1, there are lower mass galaxies in the sample, while the
mass limit for EAGLE is 1010 M� at all projected redshifts. For
the sSFR, the high sSFR merging galaxies are often misclassi-
fied as non-mergers while there is no obvious misclassification
for the non-merging galaxies.

As with the EAGLE images through the simulation network,
the apparent magnitude of the object has the largest effect on the
correct classification. Like the simulation network, the obser-
vation network also identifies faint, merging systems as non-
merging systems and identifies bright, non-merging systems as
merging systems. This is true for all five of the ugriz bands. An
example in the g-band is presented in Fig. 14. This is consis-
tent with the results seen with the projected redshift above and is
likely a result of the re-projection to the projection redshift.

It is also more likely that the more complete classification
for the EAGLE galaxies is causing the low accuracy. The SDSS
classifications are for objects that are clearly visually merging
systems while the EAGLE classifications will include systems
that are not obviously, visually merging. Thus, the observation
trained network has not been trained to identify merging systems
that are not obviously, visually merging and hence assign these
objects the non-merger classification, increasing the number of
FN.
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Table 9. Confusion matrix for EAGLE images classified by the obser-
vation network.
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Total 1435 2585

Table 10. KS-test statistic, DN,M , and the critical value, CritN,M =

c(α)
√

n+m
nm , for the EAGLE images classified by the observation

network.

Physical parameter DTP,FN CritTP,FN DTN,FP CritTN,FP

Projection redshift 0.306 0.056 0.5812 0.058
Simulation redshift 0.100 0.056 0.086 0.058
Asymmetry 0.116 0.056 0.050 0.058
Time since merger 0.152 0.056 – –
u-magnitude 0.412 0.056 0.562 0.058
g-magnitude 0.436 0.056 0.605 0.058
r-magnitude 0.416 0.056 0.612 0.058
i-magnitude 0.403 0.056 0.612 0.058
z-magnitude 0.394 0.056 0.607 0.058
Mass ratio 0.074 0.056 – –
M? 0.199 0.056 0.127 0.058
sSFR 0.110 0.056 0.049 0.060

Notes. If DN,M > CritN,M , the null hypothesis that the two distributions
are the same is rejected at level α = 0.05. Here, c(α) = 1.224 for α =
0.05 and n and m are the sizes of samples N and M.

Visual inspection of a sub-sample of the FP shows that the
majority of these objects (≈64%) appear to be isolated, non-
interacting systems. A further ≈18% of the objects have a close
chance projection that may be being mistaken for a merging
partner by the CNN. ≈8% of the FP objects are galaxies that
have been projected into a larger angular size than the origi-
nal, raw image from EAGLE. This often results in the inter-
nal structure of the galaxy being expanded and could appear
to the network to be morphological disturbances or multiple
galaxies. The remaining objects have a bright chance projection
in the SDSS noise and, as a result, are (almost) impossible to
see in the image. Examples of these galaxies can be found in
Figs. 15a–d. With accuracy, specificity and NPV all being almost
equivalent to 0.5, it is unsurprising to find examples of visually
similar galaxies that have been correctly identified and are shown
in Figs. 15e–h.

Images of the FN are more useful in understanding why the
EAGLE images are poorly classified by the observation network.
Inspecting a sub-sample, nearly half (≈46%) appear to be a
single object. This suggests that these objects have had the vis-
ible signatures of merger suppressed while being processed to
look like SDSS images, likely by the re-projection and PSF

Fig. 13. Distributions for the correctly (blue) and incorrectly (orange)
identified EAGLE objects for (a) mergers and (b) non-mergers as a
function of redshift used for projection after being classified by the
observation network. High redshift, merging systems are preferentially
classified as non-merging while low redshift non-merging systems are
preferentially classified as merging.

matching, or that these mergers are not obvious, even without the
processing steps to make them look like SDSS images. It could
also be that the merging companion is hidden behind the galaxy
it is merging with, as the angle the galaxy is viewed at is picked
randomly, so it cannot be seen within the image. Of the remain-
ing objects, ≈41% had at least one counterpart, either from the
simulation or random projections from the SDSS noise, that
could potentially be merging with the central galaxy and ≈5%
were unambiguously merging systems. As with the FP, there
are a number of images whose simulated galaxies have been
suppressed by bright chance projections from the SDSS noise.
Example FN galaxies can be found in Figs. 16a–d and their visu-
ally similar but correctly identified counterparts can be found in
Figs. 16e–h.

There are limitations of the cross application due to the selec-
tion of the EAGLE galaxies. To increase the number of galaxies
available to train the simulation network we use merging and
non-merging galaxies with simulation redshifts out to z = 1 and
re-project them to redshifts between 0.005 and 0.1. However, the
EAGLE galaxies at z = 1 have approximately half the radii of a
galaxy at z = 0 while the radii of EAGLE galaxies is similar
to those observed in the real universe (Furlong et al. 2017). As a
result, images of the EAGLE galaxies can contain an object up to
two times too small to be comparable in size to the observations,
which may hamper the observation network’s ability to correctly
identify merging and non-merging systems. If this limitation was

A49, page 12 of 18

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935355&pdf_id=13


W. J. Pearson et al.: Identifying galaxy mergers in observations and simulations with deep learning

Fig. 14. Distributions for the correctly (purple) and incorrectly (yel-
low) identified EAGLE objects for (a) mergers and (b) non-mergers as
a function of g-band magnitude after being classified by the observation
network. Faint, merging systems are preferentially classified as non-
merging while bright non-merging systems are preferentially classified
as merging.

Fig. 15. Examples of EAGLE FP galaxies (a to d) from the observation
network for (a) an isolated, non-interacting galaxy, (b) a chance pro-
jection, (c) a galaxy at low projection redshift and (d) a galaxy where
the chance projection from the SDSS noise has resulted in the EAGLE
galaxy appearing faint in the image. Panels e to h: TN galaxies that are
visually similar to those shown in (a) to (d).

reduced, or removed entirely, it is possible that the results of this
cross application could improve.

4.3.2. SDSS images through the simulation network

Passing all the SDSS images through the simulation network was
more successful than passing all the EAGLE images through

Fig. 16. Examples of EAGLE FN galaxies (a to d) from the observation
network for (a) an apparent single object, (b) a galaxy with a counter-
part, either a merger counterpart from EAGLE or a chance projection
from the SDSS noise, (c) an unambiguous merger and (d) a galaxy
where the chance projection from the SDSS noise has resulted in the
EAGLE galaxy appearing faint in the image. Panels e to h: TP galaxies
that are visually similar to those shown in (a) to (d).

Table 11. Statistics for the EAGLE images classified by the observation
network and the SDSS images classified by the simulation network.

Images EAGLE SDSS

Network Observation Simulation
Cut threshold 0.57 0.39
ROC area 0.502 0.658
Recall 0.387 0.467
Precision 0.541 0.727
Specificity 0.673 0.825
NPV 0.523 0.608
Accuracy 0.530 0.646

the observation network. While still not as good as SDSS
images through the observation network, the SDSS images clas-
sified by the simulation network had an accuracy of 0.646.
Like the EAGLE images through the observation network, the
SDSS images through the simulation network have a prefer-
ence towards the non-merger assignment, demonstrated by a low
recall of 0.467 and high specificity of 0.825. The area under the
ROC curve is 0.658, see the blue line in Fig. 12. The statis-
tics for the cross application of the networks can be found in
Table 11. The confusion matrix, showing the number of correctly
and incorrectly identified objects, can be found in Table 12.

As with the SDSS images identified by the observation net-
work, we can examine the estimated physical parameters of the
SDSS images that were classified by the simulation network.
The KS-test statistics comparing the distributions of correctly
and incorrectly identified galaxies with the physical proper-
ties can be found in Table 13. There is an obvious splitting
in the distributions of M? for correctly and incorrectly identi-
fied objects: the high mass merging objects are preferentially
assigned the non-merger classification, while the intermediate
mass non-merging objects are preferentially assigned the merger
classification. Although no low mass mergers being assigned the
non-merging class is reassuring as there are no low mass non-
merging objects. This splitting may arise from the training sam-
ple having non-merging systems as preferentially high mass and
merging objects as preferentially intermediate and low mass. A
similar, but opposite, split is seen with sSFR: low sSFR merg-
ers are identified as non-mergers, as seen in Fig. 17a, while high
sSFR non-mergers have a higher misclassification rate than low
sSFR non-mergers, as seen in Fig. 17b. This suggests that the
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Table 12. Confusion matrix for SDSS images classified by the simula-
tion network.
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Total 1929 4077

EAGLE images for merging systems may preferentially show
boosted sSFR.

The trend of the ugriz band magnitudes of the SDSS images
is also interesting. As the band becomes more red, from g
through to z, the distributions of correctly and incorrectly iden-
tified objects become more and more split, as can be seen by
the increasing KS-test statistic in Table 13. Thus, as the band
becomes redder, more and more bright mergers are classified as
non-mergers while the faint objects are correctly classified more
often. Similarly, as the bands become redder, the distribution
of incorrectly identified non-mergers moves to the fainter end.
An example of the z-band magnitude distribution is shown in
Fig. 18. The trend that is seen for misclassification in the merg-
ing systems is the opposite of the effect seen in the EAGLE test
set when classified by the simulation network.

A sub-sample of FP have been visually inspected. ≈42% of
the FP have at least one other galaxy that lie close to the pri-
mary galaxy but are not visually interacting with the primary.
These secondary galaxies are likely being identified as a merging
companion to the primary or they are possibly merging systems
that appear in simulations but are not identified as such in Galaxy
Zoo. A further ≈43% are unambiguous, non-interacting, iso-
lated galaxies. This is possibly a result of many merging systems
in the EAGLE training set visually looking like single, undis-
turbed galaxies. However, that does not exclude these galax-
ies from being true mergers as the EAGLE training set should
be more complete than the SDSS images. Approximately 8%
of objects show signs of asymmetry or morphological distur-
bances. As with the misidentified chance projections, this may be
a result of the strict selection for merging SDSS systems ignor-
ing these galaxies but the more complete selection from EAGLE
identifying these as mergers. The remaining galaxies contain a
non-physical artefact, typically a single pixel width black line
through the galaxy, although there are also a number of TN
that also have similar artefacts, so this is unlikely to be caus-
ing the misclassification. Example FP galaxies can be found in
Figs. 19a–d and the visually similar TN in Figs. 19e–h.

Alongside the 526 FP, there are 1600 FN of which we
visually examine a sub-sample. The majority of these systems
(≈79%) clearly show two interacting galaxies, which may be a
result of the network identifying these as chance projections. A
further ≈7% show clear evidence of morphological disturbances
or asymmetry. Approximately 14% of the FN have their coun-
terpart of the edge or outside the image cut-out. This suggests,
like the observation network, that a larger cut-out may help iden-

Table 13. KS-test statistic, DN,M , and the critical value, CritN,M =

c(α)
√

n+m
nm , for the SDSS images classified by the simulation network.

Physical parameter DTP,FN CritTP,FN DN,FP CritTN,FP

M? 0.472 0.045 0.417 0.059
sSFR 0.490 0.045 0.410 0.059
u-magnitude 0.186 0.045 0.130 0.059
g-magnitude 0.107 0.045 0.138 0.059
r-magnitude 0.285 0.045 0.268 0.059
i-magnitude 0.329 0.045 0.301 0.059
z-magnitude 0.379 0.045 0.334 0.059

Notes. If DN,M > CritN,M , the null hypothesis that the two distributions
are the same is rejected at level α = 0.05. Here, c(α) = 1.224 for α =
0.05 and n and m are the sizes of samples N and M.

Fig. 17. Distributions for the correctly (green) and incorrectly (brown)
identified SDSS objects for (a) mergers and (b) non-mergers as a func-
tion of sSFR after being classified by the simulation network. Low sSFR
merging systems are preferentially classified as non-merging while high
sSFR non-merging systems have a higher misclassification rate than low
sSFR non-merger.

tify these objects. Examples of these objects can be found in
Figs. 20a–d and examples of TP galaxies that look similar in
Figs. 20e–h.

As mentioned in Sect. 4.3.1, the size of the galaxies from
EAGLE may be impacting the results. The re-projection of the
high snapshot redshift galaxies to lower redshifts can result in
the EAGLE galaxies being too small by up to a factor of two in
the most extreme cases (Furlong et al. 2017). As the simulation
network is trained on these apparently smaller galaxies, it may
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Fig. 18. Distributions for the correctly (purple) and incorrectly (yellow)
identified SDSS objects after being classified by the simulation network
for (a) mergers and (b) non-mergers as a function of z-band magnitude.
Bright mergers are preferentially classified as non-mergers while the
distribution of misclassified non-mergers is skewed towards the faint
end of the distribution. This trend becomes less pronounced as the bands
become more blue, from z to u-band.

have difficulty in correctly identifying the larger SDSS galaxies.
As before, if this limitation was reduced or removed, the result
may improve.

4.4. Differences in network merger identification

To further examine the differences in the observation and sim-
ulation networks, we examined the features that each network
uses to identify a merging galaxy. A 12× 12 pixel area within
the images that were correctly identified by both networks was
made black by setting the RGB values to zero. This region was
moved across the image in steps of one pixel in both x and y
directions, generating 2704 images with different 12× 12 pixel
areas masked. For each masked image, the output for the merger
class was recorded. To determine which regions of the image
have the greatest effect on the classification, we generated a heat
map for each object where each pixel is the average of the merger
class outputs of the images where that pixel is masked, as seen
in the example in Figs. 21c and f.

As can be seen with an example SDSS galaxy in Fig. 21, both
networks require the secondary galaxy to correctly identify the
system as merging. However, as can be seen clearly in Fig. 21f,
the simulation network is also affected by the edges of the pri-
mary galaxy, the more diffuse regions, and uses these to help
determine the classification. This is likely a result of the EAGLE
merging galaxies used to train the simulation network contain-

Fig. 19. Examples of SDSS FP galaxies from the simulation network
for (a) a galaxy with a close (in projection) companion, (b) a non-
interacting, isolated galaxy, (c) a galaxy showing asymmetry or mor-
phological disturbance and (d) a galaxy with a non-physical artefact
within the image. Panels e to h: TN galaxies that are visually similar to
those shown in (a) to (d).

Fig. 20. Examples of SDSS FN galaxies from the simulation network
for (a) a galaxy with a clear merging counterpart, (b) a clearly dis-
turbed system, (c) a galaxy whose merger companion is outside of the
64× 64 pixel image and (d) the larger 256× 256 pixel image showing
the merger companion outside of panel (c). Panels e to h: TP galaxies
that are visually similar to those shown in (a) to (d).

ing systems that are longer from the merger event and so have
settled somewhat as well as alignments of the EAGLE image
such that the secondary galaxy is in the line of sight with the pri-
mary galaxy, requiring closer examination of the primary galaxy
to find perturbations that mark them as merger. As a result, the
simulation network is more sensitive to smaller changes in the
profile of the more diffuse material of a galaxy and more easily
fooled into providing an incorrect classification.

A similar distinction between how the observation and sim-
ulation networks function is seen when doing a similar exam-
ination with the EAGLE galaxies. The simulation network is
more easily fooled by masking pixels closer into the nucleus of
the primary galaxy than the observation network. However, both
networks can be fooled with many galaxy images requiring the
background noise to be un-masked to generate a correct classi-
fication. This indicates that the EAGLE galaxies are not a true
recreation of the SDSS images, helping to partially explain the
poor performance of the cross application.

There are also a small minority of galaxies that the obser-
vation and simulation networks need the opposite pixels to
correctly identify the system as merging. For example, the sim-
ulation network may not identify the system as merging if the
primary galaxy is masked but the secondary galaxy is visible
while the observation network may not identify the system cor-
rectly if the secondary is masked but the primary is visible, as
shown in Fig. 22.
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Fig. 21. Heat maps to demonstrate how the observation (top row) and
simulation (bottom row) networks detect an example merging SDSS
system. Panels a and d: original image of the galaxy being classified.
Panels b and e: regions that most effect the merger classification and
panels c and f: heat maps where regions with darker colours have a
greater affect on the classification (lower merger class output). Panels b
and e are created by stretching the heat map between zero and one and
multiplying this with the original image.

5. Conclusions

Training and applying a CNN on SDSS images has been suc-
cessful, achieving an accuracy of 91.5%. This clearly demon-
strates that CNNs can be used to reproduce visual classification.
There is no clear indication of a specific type of object that is
incorrectly identified from the physical or observable parame-
ters. Training and applying a CNN on the EAGLE images was
also somewhat successful, with an accuracy of 65.2% when
trained using mergers that will or have occurred within 100 Myr
of the image snapshot. Using a longer time between the image
snapshot and the merger reduces the accuracy of the network.
This relatively lower accuracy suggests that some EAGLE
mergers do not have visible merging features that can be picked
up by the CNN. The incorrectly identified mergers are primar-
ily at low simulation snapshot redshifts as well as faint apparent
magnitude. The combination of real noise added to the EAGLE
images and converting the absolute magnitude to apparent mag-
nitude also reduces the effectiveness of the CNN, which demon-
strates the importance of image quality (in terms of, for example,
signal-to-noise and resolution) in merger identification. Within
the image, chance projections result in a large number of non-
merging galaxies being identified as mergers.

Examining the features of the merging galaxies that result in
correct classifications, we find that the EAGLE trained network
is more sensitive to features in the diffuse part of the galaxy,
likely tidal structures and disturbances as well as the presence of
a close companion. The SDSS trained network, however, primar-
ily focuses only on the presence of a close companion galaxy.

The lower accuracy of the EAGLE trained network is most
likely a result of the difference in the training sample. The SDSS
merger sample has been selected to contain conspicuous mergers
and so the features of a merger are more easily identified but will
miss subtler mergers. Meanwhile, the EAGLE sample has fewer
conspicuous mergers but should be more complete (including
mergers with a wide range of mass ratios, gas fractions, view-
ing angles, environments, orbital parameters, etc.), resulting in
less obvious merger features, in pixel space, that are harder for a
CNN to recognise.

Passing the SDSS images through the EAGLE trained net-
work has proven to work, although with only 64.6% accuracy.
This relatively low accuracy appears to be a result of high mass
or low sSFR objects being identified as non-mergers and low

Fig. 22. Heat maps to demonstrate how the observation (top row) and
simulation (bottom row) networks detect an example merging EAGLE
system. Panels a and d: original image of the galaxy being classified.
Panels b and e: regions that most effect the merger classification and
panels c and f: heat maps where regions with darker colours have a
greater affect on the classification (lower merger class output). Panels b
and e are created by stretching the heat map between zero and one and
multiplying this with the original image.

mass or high sSFR objects being identified as mergers. This
could suggest that simulations show evidence of high sSFR in
the merging systems when this may not necessarily be true.
However, the EAGLE trained network may also be identify-
ing merging systems that the visual classification missed. The
EAGLE classification will be more complete, as we know which
systems are merging, and so the EAGLE trained network may
be identifying these objects in the SDSS images that have been
missed by the less complete, but move visually obvious, SDSS
classification. The result may be a lower specificity, that is a
smaller fraction of non-mergers are being correctly identified,
when using the SDSS classifications as the truth when in fact the
EAGLE trained network is correctly identifying merging sys-
tem missed by the human visual classification. However, the rel-
atively low recall, the fraction of mergers correctly identified,
suggests that EAGLE has relatively few conspicuous mergers.

This has a tantalising prospect for large upcoming surveys,
such as LSST and Euclid. It is possible to train a CNN with
images from simulations and apply it to observations of galaxies
from the real universe. Presently, the simulation trained network
could be used to generate a set of galaxy merger candidates,
which would need to be checked by a human expert, for use in
training an observation network. However, with further refine-
ment to the training images from simulations it is not beyond the
realm of possibility to reduce the need for an observation train-
ing set and apply a simulation trained CNN directly to images
from an entire survey, massively speeding up identification.

Passing the EAGLE images through the SDSS trained net-
work was unsuccessful, with the network preferentially assign-
ing objects to the non-merger class. This suggests that some
EAGLE mergers are not representative of the SDSS selected
mergers, although this appears to be primarily due to how
re-projecting the galaxies to their assigned redshift has been
done, so it may not be that the EAGLE mergers themselves do
not look like observable mergers. The mergers in EAGLE are
also less conspicuous than those in the SDSS training set so the
observational network has not been trained to identify these less
obvious merger events, resulting in a large number of EAGLE
mergers being identified as non-mergers.

Improvements for the simulation galaxies in future work
would be to increase the mass resolution, which can affect the
appearance of galaxies and galaxy mergers (Sparre et al. 2015;
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Torrey et al. 2015; Trayford et al. 2015; Sparre & Springel 2016),
and exactly match the stellar mass distributions with those of
observations. Increasing the time resolution, for example by using
the snipshots9 instead of snapshots from EAGLE, should also pro-
vide improvement along with improving the estimates of time to
or since the merger event by tracing when the central black holes
merge. It would also be informative to include the effects of dust
attenuation.

As has been shown in this work, chance projections are
a major problem in merger classification. In future work, we
could train the network to recognise chance projections better
by constructing training samples of galaxies which appear close
together in the sky but are actually far away from each other.
Another area to improve in the future is to come up with a more
refined merger classification system, rather than just a binary
classification of merger versus non-mergers. For example, have
separate classes of early mergers, late mergers, minor mergers,
major mergers etc.
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Appendix A: Image colour scaling

As well as using a modified Lupton et al. (2004) non-linear
colour normalisation to create the RGB images of the EAGLE
galaxies, we also used a simple linear scaling to generate RGB
images, still using gri channels for the blue, green and red
colours in the images. The difference in scaling has an effect
on a network’s ability to accurately identify merging and non-
merging galaxies.

As can be seen by comparing the results in Table 5 with
those for the linear scaling in Table A.1, the linear scaling pro-
vides a higher accuracy and larger ROC area for the 100 Myr and
200 Myr networks, while the 300 Myr network remain approx-
imately constant. However, the cross application with passing
the linear scaled EAGLE images through the observation net-
work shows a slight decrease in accuracy to the result presented

in Table 11 but the results still show a preference to assign-
ing galaxies to the non-merger classification. Passing the SDSS
images through the 100 Myr linearly scaled EAGLE trained net-
work shows no notable difference in accuracy to the results in
the main text but it does not show the tendency to assign the
SDSS galaxies to the non-merger classification that the modified
Lupton et al. (2004) trained network has.

Examination of the physical classifications and comparing
the correctly and incorrectly identified objects, from both the self
similar (EAGLE images through EAGLE trained network) and
cross application, shows no qualitative differences between the
modified Lupton et al. (2004) colour scaled and linearly scaled
EAGLE images. Similarly, visual examination of the misclas-
sified linearly scaled EAGLE images produced no major dif-
ferences to the visual examination of the modified Lupton et al.
(2004) scaled images.

Table A.1. Statistics for the 100 Myr, 200 Myr and 300 Myr EAGLE trained networks at testing using EAGLE images created with a linear colour
scaling.

Linear EAGLE SDSS images
100 Myr 200 Myr 300 Myr images through through linear

observation EAGLE trained

Epoch used 60 28 24 – –
Cut threshold 0.37 0.39 0.46 0.57 0.37
ROC area 0.800 0.745 0.727 0.515 0.689
Recall 0.667 0.612 0.652 0.234 0.676
Precision 0.788 0.715 0.689 0.494 0.630
Specificity 0.821 0.756 0.706 0.761 0.603
NPV 0.711 0.661 0.670 0.498 0.651
Accuracy 0.744 0.684 0.679 0.497 0.639

Notes. The fourth column presents the cross application of passing the linear colour scaled EAGLE images through the observation network while
the fifth column presents the cross application of passing the SDSS images through the 100 Myr linearly scaled EAGLE trained network.
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