25 research outputs found

    Intracrystalline microstructures in alkali feldspars from fluid-deficient felsic granulites: a mineral chemical and TEM study

    Get PDF
    Samples of essentially "dry” high-pressure felsic granulites from the Bohemian Massif (Variscan belt of Central Europe) contain up to 2-mm-large perthitic alkali feldspars with several generations of plagioclase precipitates in an orthoclase-rich host. The first generation takes the form of lenses homogeneous in size, whereas the size of a second generation of very thin albite-rich precipitates is more variable with comparatively high aspect ratios. In the vicinity of large kyanite, garnet or quartz inclusions, the first generation of plagioclase precipitates is significantly less abundant, the microstructure is coarser than in the remainder of the perthitic grain and the host is a tweed orthoclase. The first generation of precipitates formed at around 850°C during the high-pressure stage (16-18kbar) of metamorphism. Primary exsolution was followed by primary coarsening of the plagioclase precipitates, which still took place at high temperatures (850-700°C). The coarsening was pronounced due to the access of fluids in the outer portions of the perthitic alkali feldspar and in more internal regions around large inclusions. The second generation of albite-rich precipitates was formed at around 570°C. TEM investigations revealed that the interfaces between the second-generation plagioclase lamellae and the orthoclase-rich host are coherent or semi-coherent. During late evolutionary stages of the perthite, albite linings were formed at phase boundaries, and the perthitic microstructure was partially replaced by irregularly shaped precipitates of pure albite with incoherent interfaces. The albitization occurred below 400°C and was linked to fluid infiltration in the course of deuteric alteration. Based on size-distribution analysis, it is inferred that the precipitates of the first generation were most probably formed by spinodal decomposition, whereas the precipitates of the second generation rather were formed by nucleation and growt

    Grain-scale pressure variations in metamorphic rocks: implications for the interpretation of petrographic observations

    Get PDF
    Recent work on mineral reactions and microstructures in metamorphic rocks has focused on forward modelling of phase equilibria and on their description through chemical potential relationships which control mass transfer in rocks. The available thermodynamic databases and computer programs for phase equilibria modelling have significantly improved the quantification and understanding of geodynamic processes. Therefore, our current methodological framework seems to be satisfactory. However, the quantification approaches in petrology focus on chemical processes with oversimplified mechanics. A review of the recent literature shows that mechanical effects in rocks may result in the development of pressure variations even on a hand specimen or grain scale. Such variations are critical for interpreting microstructural and mineral composition observations in rocks. Mechanical effects may influence element transport and mineral assemblage in rocks. Considering the interplay of mechanical properties and metamorphic reactions is therefore crucial for a correct interpretation of microstructural observations in metamorphic rocks as well as for quantification of processes. In this contribution, arguments against pressure variations are inspected and disproved. The published quantification procedure for systems with grain-scale pressure variations is reviewed. We demonstrate the equivalence of using Gibbs and Helmholtz energy in an isobaric system and go on to suggest that Gibbs free energy is more convenient for systems with pressure variations. Furthermore, we outline the implications of the new quantification approach for phase equilibria modelling as well as diffusion modelling. The appropriate modification of a macroscopic flux for a system with a pressure variation is derived and a consequence of using mass or molar units in diffusional fluxes is discussed. The impact of ignoring grain-scale pressure variations on geodynamic modelling and our understanding of the processes in the Earth’s interior is assessed. We show that if a pressure variation is overlooked, the error in depth estimates from crustal metamorphic rocks could be as large as the thickness of the crust.ISSN:0024-493

    Post-entrapment modification of residual inclusion pressure and its implications for Raman elastic thermobarometry

    No full text
    Residual pressure can be preserved in mineral inclusions, e.g. quartz-in-garnet, after exhumation due to differential expansion between inclusion and host crystals. Raman spectroscopy has been applied to infer the residual pressure and provides information on the entrapment temperature and pressure conditions. However, the amount of residual pressure relaxation cannot be directly measured. An underestimation or overestimation of residual pressure may lead to significant errors between calculated and actual entrapment pressure. This study focuses on three mechanisms responsible for the residual pressure modification: (1) viscous creep; (2) plastic yield; (3) proximity of inclusion to the thin-section surface. Criteria are provided to quantify how much of the expected residual pressure is modified due to these three mechanisms. An analytical solution is introduced to demonstrate the effect of inclusion depth on the residual pressure field when the inclusion is close to the thin-section surface. It is shown that for a quartz-in-garnet system, the distance between the thin-section surface and inclusion centre needs to be at least 3 times the inclusion radius to avoid pressure release. In terms of viscous creep, representative case studies on a quartz-in-garnet system show that viscous relaxation may occur from temperatures as low as 600–700 ∘C depending on the particular pressure–temperature (P–T) path and various garnet compositions. For quartz entrapped along the prograde P–T path and subject to viscous relaxation at peak T above 600–700 ∘C, its residual pressure after exhumation may be higher than predicted from its true entrapment conditions. Moreover, such a viscous resetting effect may introduce apparent overstepping of garnet nucleation that is not related to reaction affinity

    U–Pb zircon geochronology and phase equilibria modelling of HP-LT rocks in the Ossa-Morena Zone, Portugal

    Get PDF
    The Ossa-Morena Zone (OMZ) has a complex geological history including both Cadomian and Variscan orogenic events. Therefore, the OMZ plays an important role in understanding the geodynamic evolution of Iberia. However, the P–T–t evolution of the OMZ is poorly documented. Here, we combine structural and metamorphic analyses with new geochronological data and geochemical analyses of mafic bodies in Ediacaran metasediments (in Iberia known as SĂ©rie Negra) to constrain the geodynamic evolution of the OMZ. In the studied mafic rocks, two metamorphic stages were obtained by phase equilibria modelling: (1) a high-pressure/low-temperature event of 1.0 ± 0.1 GPa and 470–510 °C, and (2) a medium-pressure/higher-temperature event of 0.6 ± 0.2 GPa and 550–600 °C. The increase in metamorphic temperature is attributed to the intrusion of the Beja Igneous Complex (around 350 Ma) and/or the Évora Massif (around 318 Ma). New U–Pb dating on zircons from the mafic rocks with tholeiitic affinity yields an age between 815 and 790 Ma. If the zircons crystallised from the tholeiitic magma, their age would set a minimum age for the pre-Cadomian basement. The ca. 800 Ma protolith age of HP-LT tholeiitic dykes with a different metamorphic history than the host SĂ©rie Negra lead us to conclude that: (1) the HP-LT mafic rocks and HP-LT marbles with dykes were included in the Ediacaran metasediments as olistoliths; (2) the blueschist metamorphism is older than 550 Ma (between ca. 790 Ma and ca. 550 Ma, e.g., Cadomian)

    Garnet microstructures suggest ultra-fast decompression of ultrahigh-pressure rocks

    No full text
    Abstract Plate tectonics is a key driver of many natural phenomena occurring on Earth, such as mountain building, climate evolution and natural disasters. How plate tectonics has evolved through time is still one of the fundamental questions in Earth sciences. Natural microstructures observed in exhumed ultrahigh-pressure rocks formed during continental collision provide crucial insights into tectonic processes in the Earth’s interior. Here, we show that radial cracks around SiO2 inclusions in ultrahigh-pressure garnets are caused by ultrafast decompression. Decompression rates of at least 8 GPa/Myr are inferred independently of current petrochronological estimates by using thermo-mechanical numerical modeling. Our results question the traditional interpretation of fast and significant vertical displacement of ultrahigh-pressure tectonic units during exhumation. Instead, we propose that such substantial decompression rates are related to abrupt changes in the stress state of the lithosphere independently of the spatial displacement

    U–Pb zircon geochronology and phase equilibria modelling of HP-LT rocks in the Ossa-Morena Zone, Portugal

    No full text
    The Ossa-Morena Zone (OMZ) has a complex geological history including both Cadomian and Variscan orogenic events. Therefore, the OMZ plays an important role in understanding the geodynamic evolution of Iberia. However, the P–T–t evolution of the OMZ is poorly documented. Here, we combine structural and metamorphic analyses with new geochronological data and geochemical analyses of mafic bodies in Ediacaran metasediments (in Iberia known as SĂ©rie Negra) to constrain the geodynamic evolution of the OMZ. In the studied mafic rocks, two metamorphic stages were obtained by phase equilibria modelling: (1) a high-pressure/low-temperature event of 1.0 ± 0.1 GPa and 470–510 °C, and (2) a medium-pressure/higher-temperature event of 0.6 ± 0.2 GPa and 550–600 °C. The increase in metamorphic temperature is attributed to the intrusion of the Beja Igneous Complex (around 350 Ma) and/or the Évora Massif (around 318 Ma). New U–Pb dating on zircons from the mafic rocks with tholeiitic affinity yields an age between 815 and 790 Ma. If the zircons crystallised from the tholeiitic magma, their age would set a minimum age for the pre-Cadomian basement. The ca. 800 Ma protolith age of HP-LT tholeiitic dykes with a different metamorphic history than the host SĂ©rie Negra lead us to conclude that: (1) the HP-LT mafic rocks and HP-LT marbles with dykes were included in the Ediacaran metasediments as olistoliths; (2) the blueschist metamorphism is older than 550 Ma (between ca. 790 Ma and ca. 550 Ma, e.g., Cadomian).European Research Council http://dx.doi.org/10.13039/501100000781Ruprecht-Karls-Universitâ”œĂ±t Heidelberg (1026
    corecore