315 research outputs found
Things that go ‘round: A rhythmanalysis of the relationship between a ceramics practice and domesticity using the form of the vessel
Things that go ‘round: A rhythmanalysis of the relationship between a ceramics practice and domesticity using the form of the vessel This research starts from a hypothesis that a ceramics practice undertaken within the home is interwoven with other, everyday domestic obligations. The practitioner must also function as a person, this means some of their time must be allocated to domestic tasks such as washing, cleaning, caring, eating etc. When a ceramics practice happens in the same space as these demands, there is inevitably some overlap in the temporal experience of undertaking tasks. Lefebvre’s concept of Rhythmanalysis provides a platform from which to explore the rhythms of this experience.The research is practice-based with an existing ceramics practice as the primary method. The methodology of the research is autoethnographic, meaning the researcher is also the subject. The ethnographic position is an increasingly significant culture of working from home. Alongside the ceramics practice is an experimental writing technique called the ‘Blovel’, a portmanteau of blog and novel. The Blovel is a series of independent texts (or posts) that function alternately as reflection, a diary, and data capture. Together the 67 posts also tell the ‘story’ of the researcher’s experience of completing a practice-based PhD, albeit in a fragmented manner. Additionally the Blovel writing is embedded within the thesis providing a text with two distinct voices: the academic and the personal. This positions the Blovel simultaneously as method and creative outcome, providing rich and thick descriptions within the thesis. Further outcomes from the research are a performance called Smalls that synthesises practice-based and theoretic findings to consider the temporal (or rhythmic) relationship between domestic tasks and ceramics production, and the Covid Clay Diary, a series of 90 ceramic vessels made, one per day, during 90 days of the first COVID-19 lockdown in 2020.Throughout the research the vessel takes centre stage, sometimes resembling a coffee cup or other domestic ware, although often in a more abstract guise. The vessel is 8conceptualised throughout as the universally understood object that bridges the public/private divide. Imagine a coffee cup that is equally at home on the kitchen counter or in the boardroom, or even on the train in between. Ultimately the research comes together in a non-hierarchical cohesive whole. All outcomes – The performance of Smalls, the Blovel, the thesis and the COVID Clay diary - contribute to understanding and together draw on Lefebvre’s theory to form Rhythmanalyses of their own and collectively. There are several original contributions to knowledge:• A body of ceramics practice that sits at the confluence of a novel combination of theoretical and autobiographical understandings of the relationship between the domestic and creative practice – via the idea of the vessel• A new way of conducting and expressing a rhythmanalysis – via the ceramic outputs, the alternative format of the thesis and the writing in the Blovel• An exploration and proposal of the vessel as an object that spans the public/private divide • The Blovel, providing a new autoethnographic model that ties together method, outcome, overall narrative of the process and contribution to the thesis in a manner that wraps around the whole research process and permits the complexities of life to be brought together as a whole• An accessible model of practice that promotes holistic and egalitarian outcomes• An original response to the COVID-19 Pandemic by way of an object-based diar
Factorization and resummation of s-channel single top quark production
In this paper we study the factorization and resummation of s-channel single
top quark production in the Standard Model at both the Tevatron and the LHC. We
show that the production cross section in the threshold limit can be factorized
into a convolution of hard function, soft function and jet function via
soft-collinear-effective-theory (SCET), and resummation can be performed using
renormalization group equation in the momentum space resummation formalism. We
find that in general, the resummation effects enhance the Next-to-Leading-Order
(NLO) cross sections by about at both the Tevatron and the LHC, and
significantly reduce the factorization scale dependence of the total cross
section at the Tevatron, while at the LHC we find that the factorization scale
dependence has not been improved, compared with the NLO results.Comment: 29 pages, 7 figures; version published in JHE
Maternal neurofascin-specific autoantibodies bind to structures of the fetal nervous system during pregnancy, but have no long term effect on development in the rat
Neurofascin was recently reported as a target for axopathic autoantibodies in patients with multiple sclerosis (MS), a response that will exacerbate axonal pathology and disease severity in an animal model of multiple sclerosis. As transplacental transfer of maternal autoantibodies can permanently damage the developing nervous system we investigated whether intrauterine exposure to this neurofascin-specific response had any detrimental effect on white matter tract development. To address this question we intravenously injected pregnant rats with either a pathogenic anti-neurofascin monoclonal antibody or an appropriate isotype control on days 15 and 18 of pregnancy, respectively, to mimic the physiological concentration of maternal antibodies in the circulation of the fetus towards the end of pregnancy. Pups were monitored daily with respect to litter size, birth weight, growth and motor development. Histological studies were performed on E20 embryos and pups sacrificed on days 2, 10, 21, 32 and 45 days post partum. Results: Immunohistochemistry for light and confocal microscopy confirmed passively transferred anti-neurofascin antibody had crossed the placenta to bind to distinct structures in the developing cortex and cerebellum. However, this did not result in any significant differences in litter size, birth weight, or general physical development between litters from control mothers or those treated with the neurofascin-specific antibody. Histological analysis also failed to identify any neuronal or white matter tract abnormalities induced by the neurofascin-specific antibody. Conclusions: We show that transplacental transfer of circulating anti-neurofascin antibodies can occur and targets specific structures in the CNS of the developing fetus. However, this did not result in any pre- or post-natal abnormalities in the offspring of the treated mothers. These results assure that even if anti-neurofascin responses are detected in pregnant women with multiple sclerosis these are unlikely to have a negative effect on their children
DRAM-3 modulates autophagy and promotes cell survival in the absence of glucose
Macroautophagy is a membrane-trafficking process that delivers cytoplasmic constituents to lysosomes for degradation. The process operates under basal conditions as a mechanism to turnover damaged or misfolded proteins and organelles. As a result, it has a major role in preserving cellular integrity and viability. In addition to this basal function, macroautophagy can also be modulated in response to various forms of cellular stress, and the rate and cargoes of macroautophagy can be tailored to facilitate appropriate cellular responses in particular situations. The macroautophagy machinery is regulated by a group of evolutionarily conserved autophagy-related (ATG) proteins and by several other autophagy regulators, which either have tissue-restricted expression or operate in specific contexts. We report here the characterization of a novel autophagy regulator that we have termed DRAM-3 due to its significant homology to damage-regulated autophagy modulator (DRAM-1). DRAM-3 is expressed in a broad spectrum of normal tissues and tumor cells, but different from DRAM-1, DRAM-3 is not induced by p53 or DNA-damaging agents. Immunofluorescence studies revealed that DRAM-3 localizes to lysosomes/autolysosomes, endosomes and the plasma membrane, but not the endoplasmic reticulum, phagophores, autophagosomes or Golgi, indicating significant overlap with DRAM-1 localization and with organelles associated with macroautophagy. In this regard, we further proceed to show that DRAM-3 expression causes accumulation of autophagosomes under basal conditions and enhances autophagic flux. Reciprocally, CRISPR/Cas9-mediated disruption of DRAM-3 impairs autophagic flux confirming that DRAM-3 is a modulator of macroautophagy. As macroautophagy can be cytoprotective under starvation conditions, we also tested whether DRAM-3 could promote survival on nutrient deprivation. This revealed that DRAM-3 can repress cell death and promote long-term clonogenic survival of cells grown in the absence of glucose. Interestingly, however, this effect is macroautophagy-independent. In summary, these findings constitute the primary characterization of DRAM-3 as a modulator of both macroautophagy and cell survival under starvation conditions
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
The triggering receptor expressed on myeloid cells (TREM) in inflammatory bowel disease pathogenesis
The Triggering Receptors Expressed on Myeloid cells (TREM) are a family of cell-surface molecules that control inflammation, bone homeostasis, neurological development and blood coagulation. TREM-1 and TREM-2, the best-characterized receptors so far, play divergent roles in several infectious diseases. In the intestine, TREM-1 is highly expressed by macrophages, contributing to inflammatory bowel disease (IBD) pathogenesis. Contrary to current understanding, TREM-2 also promotes inflammation in IBD by fueling dendritic cell functions. This review will focus specifically on recent insights into the role of TREM proteins in IBD development, and discuss opportunities for novel treatment approaches
Limited congruence exhibited across microbial, meiofaunal and macrofaunal benthic assemblages in a heterogeneous coastal environment
One of the most common approaches for investigating the ecology of spatially complex environments is to examine a single biotic assemblage present, such as macroinvertebrates. Underlying this approach are assumptions that sampled and unsampled taxa respond similarly to environmental gradients and exhibit congruence across different sites. These assumptions were tested for five benthic groups of various sizes (archaea, bacteria, microbial eukaryotes/protists, meiofauna and macrofauna) in Plymouth Sound, a harbour with many different pollution sources. Sediments varied in granulometry, hydrocarbon and trace metal concentrations. Following variable reduction, canonical correspondence analysis did not identify any associations between sediment characteristics and assemblage composition of archaea or macrofauna. In contrast, variation in bacteria was associated with granulometry, trace metal variations and bioturbation (e.g. community bioturbation potential). Protists varied with granulometry, hydrocarbon and trace metal predictors. Meiofaunal variation was associated with hydrocarbon and bioturbation predictors. Taxon turnover between sites varied with only three out of 10 group pairs showing congruence (meiofauna-protists, meiofauna-macrofauna and protists-macrofauna). While our results support using eukaryotic taxa as proxies for others, the lack of congruence suggests caution should be applied to inferring wider indicator or functional interpretations from studies of a single biotic assemblage
Mapping Cumulative Environmental Risks: Examples from The EU NoMiracle Project
We present examples of cumulative chemical risk mapping methods developed within the NoMiracle project. The different examples illustrate the application of the concentration addition (CA) approach to pesticides at different scale, the integration in space of cumulative risks to individual organisms under the CA assumption, and two techniques to (1) integrate risks using data-driven, parametric statistical methods, and (2) cluster together areas with similar occurrence of different risk factors, respectively. The examples are used to discuss some general issues, particularly on the conventional nature of cumulative risk maps, and may provide some suggestions for the practice of cumulative risk mapping
- …
