7,147 research outputs found
Mgb2 Nonlinear Properties Investigated under Localized High RF Magnetic Field Excitation
In order to increase the accelerating gradient of Superconducting Radio
Frequency (SRF) cavities, Magnesium Diboride (MgB2) opens up hope because of
its high transition temperature and potential for low surface resistance in the
high RF field regime. However, due to the presence of the small superconducting
gap in the {\pi} band, the nonlinear response of MgB2 is potentially quite
large compared to a single gap s-wave superconductor (SC) such as Nb.
Understanding the mechanisms of nonlinearity coming from the two-band structure
of MgB2, as well as extrinsic sources, is an urgent requirement. A localized
and strong RF magnetic field, created by a magnetic write head, is integrated
into our nonlinear-Meissner-effect scanning microwave microscope [1]. MgB2
films with thickness 50 nm, fabricated by a hybrid physical-chemical vapor
deposition technique on dielectric substrates, are measured at a fixed location
and show a strongly temperature-dependent third harmonic response. We propose
that at least two mechanisms are responsible for this nonlinear response, one
of which involves vortex nucleation and penetration into the film. [1] T. M.
Tai, X. X. Xi, C. G. Zhuang, D. I. Mircea, S. M. Anlage, "Nonlinear Near-Field
Microwave Microscope for RF Defect Localization in Superconductors", IEEE
Trans. Appl. Supercond. 21, 2615 (2011).Comment: 6 pages, 6 figure
High resolution 10 mu spectrometry at different planetary latitudes. A practical Hadamard transform spectrometer for astronomical application
Infrared observations at different latitudes were studied in order to obtain spectra in the 10 micrometers region to understand differences in chemical composition or physical structure of the optical features. In order to receive such spectra of a rotating planet, simultaneous observations at different latitudes were made. A Hadamard transform spectrometer with 15 entrance slits was used to obtain 15 simultaneous spectra, at a resolution of 0.01 micrometers. The spectral band covered contained 255 spectral elements
Casimir Forces and Graphene Sheets
The Casimir force between two infinitely thin parallel sheets in a setting of
such sheets is found. The finite two-dimensional conductivities, which
describe the dispersive and absorptive properties of each sheet, are taken into
account, whereupon the theory is applied to interacting graphenes. By exploring
similarities with in-plane optical spectra for graphite, the conductivity of
graphene is modeled as a combination of Lorentz type oscillators. We find that
the graphene transparency and the existence of a universal constant
conductivity result in graphene/graphene Casimir interaction at
large separations to have the same distance dependence as the one for perfect
conductors but with much smaller magnitude
A Data-Driven Methodology to Comprehensively Assess Bone Drilling Using Radar Plots
BACKGROUND: The study aims to develop a data-driven methodology to assess bone drilling in preparation for future clinical trials in residency training. The existing assessment methods are either subjective or do not consider the interdependence among individual skill factors, such as time and accuracy. This study uses quantitative data and radar plots to visualize the balance of the selected skill factors.
METHODS: In the experiment, straight vertical drilling was assessed across 3 skill levels: expert surgeons (N = 10), intermediate residents (postgraduate year-2-5, N = 5), and novice residents (postgraduate year-1, N = 10). Motion and force were measured for each drilling trial, and data from multiple trials were then converted into 5 performance indicators, including overshoot, drilling time, overshoot consistency, time consistency, and force fluctuation. Each indicator was then scored between 0 and 10, with 10 being the best, and plotted into a radar plot.
RESULTS: Statistical difference (p \u3c 0.05) was confirmed among 3 skill levels in force, time, and overshoot data. The radar plots revealed that the novice group exhibited the most distorted pentagons compared with the well-formed pentagons observed in the case of expert participants. The intermediate group showed slight distortion that was between the expert and novice groups.
CONCLUSION/CLINICAL RELEVANCE: This research shows the utility of radar plots in drilling assessment in a comprehensive manner and lays the groundwork for a data-driven training scheme to prepare novice residents for clinical practice
Weak and Strong coupling regimes in plasmonic-QED
We present a quantum theory for the interaction of a two level emitter with
surface plasmon polaritons confined in single-mode waveguide resonators. Based
on the Green's function approach, we develop the conditions for the weak and
strong coupling regimes by taking into account the sources of dissipation and
decoherence: radiative and non-radiative decays, internal loss processes in the
emitter, as well as propagation and leakage losses of the plasmons in the
resonator. The theory is supported by numerical calculations for several
quantum emitters, GaAs and CdSe quantum dots and NV centers together with
different types of resonators constructed of hybrid, cylindrical or wedge
waveguides. We further study the role of temperature and resonator length.
Assuming realistic leakage rates, we find the existence of an optimal length at
which strong coupling is possible. Our calculations show that the strong
coupling regime in plasmonic resonators is accessible within current technology
when working at very low temperatures (<4K). In the weak coupling regime our
theory accounts for recent experimental results. By further optimization we
find highly enhanced spontaneous emission with Purcell factors over 1000 at
room temperature for NV-centers. We finally discuss more applications for
quantum nonlinear optics and plasmon-plasmon interactions.Comment: published as Phys. Rev. B 87, 115419 (2013
Recommended from our members
Infectious Syphilis in Non-Hispanic Blacks and Hispanics in an Urban STD Clinic
Syphilis is a complex infectious disease caused by Treponema pallidum and acquired through sexual contact or vertical transmission. The natural history of syphilis is divided in primary, secondary, latent and tertiary stages. The syphilis epidemic has evolved over the years. National rates of syphilis infection dropped to the lowest in 2000 and have since increased in certain populations. Men who have sex with men (MSM) account for 60% of new infections and high rates occur in individuals with human immune deficiency virus co-infection. This study describes and compares the demographic characteristics, risk factors, and clinical presentation ofinfectious syphilis cases diagnosed in the Miami-Dade Health Department STD clinic among the two main ethnicities (non-Hispanic Black and Hispanic)
Timed Implementation Relations for the Distributed Test Architecture
In order to test systems that have physically distributed interfaces, called ports, we might use a distributed approach in which there is a separate tester at each port. If the testers do not synchronise during testing then we cannot always determine the relative order of events observed at different ports and this leads to new notions of correctness that have been described using corresponding implementation relations. We study the situation in which each tester has a local clock and timestamps its observations. If we know nothing about how the local clocks relate then this does not affect the implementation relation while if the local clocks agree exactly then we can reconstruct the sequence of observations made. In practice, however, we are likely to be between these extremes: the local clocks will not agree exactly but we have some information regarding how they can differ. We start by assuming that a local tester interacts synchronously with the corresponding port of the system under test and then extend this to the case where communications can be asynchronous, considering both the first-in-first-out (FIFO) case and the non-FIFO case. The new implementation relations are stronger than implementation relations for distributed testing that do not use timestamps but still reflect the distributed nature of observations. This paper explores these alternatives and derives corresponding implementation relations
Nanobubbles at hydrophilic particleāwater interfaces
The puzzling persistence of nanobubbles breaks Laplaceās law for bubbles, which is of great interest for promising applications in surface processing, H2 and CO2 storage, water treatment, and drug delivery. So far, nanobubbles are mostly reported on the hydrophobic planar substrates with atom flatness. It remains a challenge to quantify nanobubbles on rough and irregular surfaces due to the lack of characterization technique that can detect both the nanobubble morphology and chemical composition inside individual nanobubble-like objects. Here, by using synchrotron-based scanning transmission soft X-ray microscopy (STXM) with nanometer resolution, we discern nanoscopic gas bubbles > 25 nm with direct in-situ proof of O2 inside the nanobubbles at a hydrophilic particle-water interface under ambient conditions. We find a stable cloud of O2 nanobubbles at the diatomite particle-water interface hours after oxygen aeration and temperature variation. The in situ technique may be useful for many surface nanobubble related studies such as material preparation and property manipulation, phase equilibrium, nucleation kinetics and their relationships with chemical composition within the confined nanoscale space. The oxygen nanobubble clouds may be important in modifying particle-water interfaces and offering breakthrough technologies for oxygen delivery in sediment and/or deep water environment
-scaling and heat capacity in relativistic ion collisions
The -scaling method has been applied to the total multiplicity
distribution of the relativistic ion collisions of p+p, C+C and Pb+Pb which
were simulated by a Monte Carlo package, LUCIAE 3.0. It is found that the
-scaling parameter decreases with the increasing of the system size.
Moreover, the heat capacities of different mesons and baryons have been
extracted from the event-by-event temperature fluctuation in the region of low
transverse mass and they show the dropping trend with the increasing of impact
parameter.Comment: version 2: major change: 4 pages, 3 figures; Proceeding of
International Conference on "Strangeness in Quark Matter" (SQM2004), Cape
Town, South Africa, Spet. 2004 (Submitted to J. Phys. G.
Parton energy loss in an expanding quark-gluon plasma: Radiative vs collisional
We perform a comparison of the radiative and collisional parton energy losses
in an expanding quark-gluon plasma. The radiative energy loss is calculated
within the light-cone path integral approach. The collisional energy loss is
calculated using the Bjorken method with an accurate treatment of the binary
collision kinematics. Our numerical results demonstrate that for RHIC and LHC
conditions the collisional energy loss is relatively small in comparison to the
radiative one. We find an enhancement of the heavy quark radiative energy loss
as compared to that of the light quarks at high energies.Comment: 13 pages, 3 figure
- ā¦