5 research outputs found

    Evidence of ozone-induced visible foliar injury in Hong Kong using Phaseolus vulgaris as a bioindicator

    Get PDF
    (1) Background: Hong Kong is one of the most densely populated cities in the world, with millions of people exposed to severe air pollution. Surface ozone, mostly produced photochemically from anthropogenic precursor gases, is harmful to both humans and vegetation. The phytotoxicity of ozone has been shown to damage plant photosynthesis, induce early leaf death, and retard growth. (2) Methods: We use genotypes of bush bean Phaseolus vulgaris with various degrees of sensitivity to ozone to investigate the impacts of ambient ozone on the morphology and development of the beans. We use ozone-induced foliar injury index and measure the flowering and fruit production to quantify the ozone stress on the plants. (3) Results: We expected that the ozone-sensitive genotype would suffer from a reduction of yield. Results, however, show that the ozone-sensitive genotype suffers higher ozone-induced foliar damage as expected but produces more pods and beans and heavier beans than the ozone-resistant genotype. (4) Conclusions: It is postulated that the high ozone sensitivity of the sensitive genotype causes stress-induced flowering, and therefore results in higher bean yield. A higher than ambient concentration of ozone is needed to negatively impact the yield production of the ozone-sensitive genotype. Meanwhile, ozone-induced foliar damage shows a graduated scale of damage pattern that can be useful for indicating ozone levels. This study demonstrates the usefulness of bioindicators to monitor the phytotoxic effects of ozone pollution in a subtropical city such as Hong Kong

    Calibrating soybean parameters in JULES 5.0 from the US-Ne2/3 FLUXNET sites and the SoyFACE-O3 experiment

    Get PDF
    Abstract. Tropospheric ozone (O3) is the third most important anthropogenic greenhouse gas. O3 is detrimental to plant productivity, and it has a significant impact on crop yield. Currently, the Joint UK Land Environment Simula- tor (JULES) land surface model includes a representation of global crops (JULES-crop) but does not have crop-specific O3 damage parameters and applies default C3 grass O3 pa- rameters for soybean that underestimate O3 damage. Physiological parameters for O3 damage in soybean in JULES- crop were calibrated against leaf gas-exchange measure- ments from the Soybean Free Air Concentration Enrichment (SoyFACE) with O3 experiment in Illinois, USA. Other plant parameters were calibrated using an extensive array of soy- bean observations such as crop height and leaf carbon and meteorological data from FLUXNET sites near Mead, Nebraska, USA. The yield, aboveground carbon, and leaf area index (LAI) of soybean from the SoyFACE experiment were used to evaluate the newly calibrated parameters. The result shows good performance for yield, with the modelled yield being within the spread of the SoyFACE observations. Although JULES-crop is able to reproduce observed LAI sea- sonality, its magnitude is underestimated. The newly calibrated version of JULES will be applied regionally and glob- ally in future JULES simulations. This study helps to build a state-of-the-art impact assessment model and contribute to a more complete understanding of the impacts of climate change on food production

    Satellite-derived constraints on the effect of drought stress on biogenic isoprene emissions in the southeastern US

    No full text
    While substantial progress has been made to improve our understanding of biogenic isoprene emissions under unstressed conditions, large uncertainties remain with respect to isoprene emissions under stressed conditions. Here, we use the US Drought Monitor (USDM) as a weekly drought severity index and tropospheric columns of formaldehyde (HCHO), the key product of isoprene oxidation, retrieved from the Ozone Monitoring Instrument (OMI) to derive top-down constraints on the response of summertime isoprene emissions to drought stress in the southeastern United States (SE US), a region of high isoprene emissions that is also prone to drought. OMI HCHO column density is found to be 6.7 % (mild drought) to 23.3 % (severe drought) higher than that under non-drought conditions. A global chemical transport model, GEOS-Chem, with version 2.1 of the Model of Emissions of Gases and Aerosols from Nature (MEGAN2.1) emission algorithm can simulate this direction of change, but the simulated increases at the corresponding drought levels are 1.1-1.5 times that of OMI HCHO, suggesting the need for a drought-stress algorithm in the model. By minimizing the model-OMI differences in HCHO to temperature sensitivity under different drought levels, we derived a top-down drought stress factor (γd_OMI) in GEOS-Chem that parameterizes using water stress and temperature. The algorithm led to an 8.6 % (mild drought) to 20.7 % (severe drought) reduction in isoprene emissions in the SE US relative to the simulation without it. With γd_OMI the model predicts a nonlinear increasing trend in isoprene emissions with drought severity that is consistent with OMI HCHO and a single site's isoprene flux measurements. Compared with a previous drought stress algorithm derived from the latter, the satellite-based drought stress factor performs better with respect to capturing the regional-scale drought-isoprene responses, as indicated by the near-zero mean bias between OMI and simulated HCHO columns under different drought conditions. The drought stress algorithm also reduces the model's high bias in organic aerosol (OA) simulations by 6.60 % (mild drought) to 11.71 % (severe drought) over the SE US compared to the no-stress simulation. The simulated ozone response to the drought stress factor displays a spatial disparity due to the isoprene-suppressing effect on oxidants, with an <1 ppb increase in O3 in high-isoprene regions and a 1-3 ppbv decrease in O3 in low-isoprene regions. This study demonstrates the unique value of exploiting long-term satellite observations to develop empirical stress algorithms on biogenic emissions where in situ flux measurements are limited.This work was supported by the NASA Atmospheric Composition Modeling and Analysis Program (grant no. 80NSSC19K0986). The development of the ecophysiology module in GEOS-Chem has also been supported by the General Research Fund (grant no. 14306220) granted by the Hong Kong Research Grants Council. The authors thank NASA Langley Research Center for the OMI HCHO column data and the National Drought Mitigation Center for making and providing the USDM maps. Roger Seco was supported by grant nos. RYC2020-029216-I and CEX2018-000794-S, funded by MCIN/AEI/10.13039/501100011033, and by the European Social Fund “ESF Investing in your future”.Peer reviewe
    corecore