32 research outputs found

    Ichneumonid parasitoids (Hymenoptera: Ichneumonidae) reared in North Europe from pupae of Chelis puengeleri (Bang-Haas, 1927) (Lepidoptera: Erebidae, Arctiinae)

    Get PDF
    Four ichneumonid species were reared for the first time from pupae of Chelis puengeleri in North Europe. One female of Pimpla sodalis Ruthe, 1859 (Pimplinae) was reared in Cievrracohkka, N Sweden in July 2012. One male of Ichneumon formosus Gravenhorst, 1829 (Ichneumoninae) was reared in NissuntjÄrro, Torne Lappland, Sweden in July 2012. One male of Ichneumon vafer Tischbein, 1876 (Ichneumoninae) was reared in July 1999 in the Iremel Mountain reserve, Baskiria, South Ural, Russia. Two females and one male of Ichneumon holoarctiae Riedel et Vikberg sp. n. (Ichneumoninae) were reared in June and July 2004 and 2012 in Finnmark, North Norway

    MODELING REQUIREMENTS FOR FUTURE: ISSUES AND IMPLEMENTATION CONSIDERATIONS

    Get PDF
    In this paper, we discuss some requirements for future CASE (Computer Aided Software/Systems Engineering) environments. These requirements include increased modifiability and flexibility as well as support for task and agent models. We claim that they can only be addressed by developing more powerful representation and modeling techniques. As a possible basis for a modeling technique, we propose the GOPRR (Graph-Object-Property-Relationship-Role) data model, which addresses some of these requirements. In addition, a general information architecture for a future CASE environment is outlined. It includes three kinds of models for methodology specification: meta-datamodels, activity (task) models, and agent models. These models are defined using the GOPRR model with some additional concepts for IS development process and agent participation

    SeurantakĂ€sikirja Suomen merenhoitosuunnitelman seurantaohjelmaan vuosille 2020–2026

    Get PDF
    TĂ€mĂ€ merenhoidon seurantakĂ€sikirja kĂ€sittÀÀ merenhoitosuunnitelman seurantaohjelman kuvauksen kokonaisuudessaan. Se pĂ€ivittÀÀ vuoden 2014–2020 seurantaohjelman ja sitĂ€ sovelletaan vuoden 2020 heinĂ€kuusta vuoden 2026 heinĂ€kuuhun. Seurantaohjelma on osa merenhoidon suunnittelua, jota tehdÀÀn vesienhoidon ja merenhoidon jĂ€rjestĂ€misestĂ€ annetun lain (272/2011) ja merenhoidon jĂ€rjestĂ€misestĂ€ annetun valtioneuvoston asetuksen (980/2011) toteuttamiseksi. TĂ€mĂ€ laki ja asetus on annettu meristrategiadirektiivin (Euroopan parlamentin ja neuvoston direktiivi 2008/56/EY yhteisön meriympĂ€ristöpolitiikan puitteista) kansallista toimeenpanoa varten. Suomessa meristrategiadirektiivin mukaista meristrategiaa kutsutaan merenhoitosuunnitelmaksi. Suomen seurantaohjelma koostuu 13:sta ohjelmasta, joiden alla on yhteensĂ€ 44 alaohjelmaa. TĂ€hĂ€n pĂ€ivitettyyn seurantaohjelmaan lisĂ€ttiin kuusi uutta alaohjelmaa ja useita alaohjelmia muokattiin joko muuttuneiden vaatimusten, kehittyneempien menetelmien tai muuttuneen toimintaympĂ€ristön takia. Merenhoidon uusia vaatimuksia ovat meristrategiadirektiivin liitteen 3 pĂ€ivitys (EU/2017/845), Euroopan komission pÀÀtös EU/2017/848 merivesien hyvĂ€n ekologisen tilan vertailuperusteista ja menetelmĂ€standardeista sekĂ€ seurantaa ja arviointia varten tarkoitetut tĂ€smennykset standardoiduista menetelmistĂ€. SeurantakĂ€sikirja koostuu kolmesta osasta: seurantaohjelman tausta, varsinainen seurantaohjelma, ja kolmas osa, joka kĂ€sittelee seurannan kehitystarpeita, kustannuksia ja riittĂ€vyyttĂ€. Seurantaohjelma kattaa ekosysteemilĂ€hestymistavan mukaisesti erilaisia muuttujia, jotka kuvaavat toisaalta veden ominaisuuksia ja laatua ja toisaalta ekosysteemin osia ja niiden tilaa sekĂ€ niihin kohdistuvia ihmisestĂ€ johtuvia paineita. Seurannan alaohjelmissa on kuvattu mitattavat meriympĂ€ristön ominaisuudet tai paineet, niiden seurantatiheys, indikaattorit, joihin seurantatietoa kĂ€ytetÀÀn, seurannalla kootun tiedon hallinta ja yhteydet meristrategiadirektiivin hyvĂ€n tilan laadullisiin kuvaajiin ja kriteereihin

    Permanent magnet electron optics of electron microscope

    No full text

    Permanent magnet electron optics of electron microscope

    No full text

    An annotated CASE bibliography

    No full text

    Effects of exercise training on cardiovagal and sympathetic responses to Valsalva’s maneuver

    No full text
    Purpose We tested the hypothesis that a strictly-controlled program of aerobic conditioning would increase vagal and decrease sympathetic responses to Valsalva straining. Methods Eleven young men performed a maximal aerobic capacity test, controlled frequency breathing (0.25 Hz), and three Valsalva maneuvers before and after 4 wk of exercise training on a cycle ergometer (30 min at ≄ 70% max heart rate, 3 sessions · week−1). During controlled breathing and Valsalva straining, we recorded the electrocardiogram, noninvasive beat-by-beat arterial pressure, and peroneal nerve muscle sympathetic traffic at the popliteal fossa (pre- and postexercise sympathetic recordings were obtainable in 7 of 11 subjects). Vagal-cardiac tone was estimated from R-R interval standard deviations during controlled frequency breathing. Cardiovagal baroreflex sensitivity was derived from increases of R-R intervals as functions of increases in systolic pressures with linear regression analysis during phase IV pressure increases, and sympathetic sensitivity was derived from the quotient of total muscle sympathetic nerve activity and diastolic pressure changes during phase II pressure reductions. Results Exercise training increased V̇O2 max (3.38 ± 0.10 pre-, and 3.64 ± 0.11 L · min−1 postexercise; mean ± SE;P = 0.04), R-R interval standard deviations (75 ± 0.12 pre- and 94 ± 0.14 ms postexercise; mean ± SE;P = 0.03), and cardiovagal baroreflex sensitivity (15.0 ± 1.1 pre-, and 25.0 ms · mm Hg−1 ± 4.0 postexercise; mean ± SE;P = 0.03). Exercise training did not change baseline sympathetic traffic (P = 0.31) or sympathetic nerve responses to diastolic pressure reductions (P = 0.12). Conclusions Exercise training affects vagal and sympathetic mechanisms differently: cardiovagal baroreflexsensitivity is increased, but sympathetic responses to arterial pressure decreases are unchanged
    corecore