80 research outputs found

    Development of molecular markers associated with resistance to Meloidogyne incognita by performing quantitative trait locus analysis and genome-wide association study in sweetpotato

    Get PDF
    The southern root-knot nematode, Meloidogyne incognita, is a pest that decreases yield and the quality of sweetpotato [Ipomoea batatas (L.) Lam.]. There is a demand to produce resistant cultivars and develop DNA markers to select this trait. However, sweetpotato is hexaploid, highly heterozygous, and has an enormous genome (similar to 3 Gb), which makes genetic linkage analysis difficult. In this study, a high-density linkage map was constructed based on retrotransposon insertion polymorphism, simple sequence repeat, and single nucleotide polymorphism markers. The markers were developed using F-1 progeny between J-Red, which exhibits resistance to multiple races of M. incognita, and Choshu, which is susceptible to multiple races of such pest. Quantitative trait locus (QTL) analysis and a genome-wide association study detected highly effective QTLs for resistance against three races, namely, SP1, SP4, and SP6-1, in the Ib01-6 J-Red linkage group. A polymerase chain reaction marker that can identify genotypes based on single nucleotide polymorphisms located in this QTL region can discriminate resistance from susceptibility in the F-1 progeny at a rate of 70%. Thus, this marker could be helpful in selecting sweetpotato cultivars that are resistant to multiple races of M. incognita

    Development and Evaluation of a Miniaturized Taste Sensor Chip

    Get PDF
    A miniaturized taste sensor chip was designed for use in a portable-type taste sensing system. The fabricated sensor chip (40 mm × 26 mm × 2.2 mm) has multiple taste-sensing sites consisting of a poly(hydroxyethyl methacrylate) hydrogel with KCl as the electrolyte layer for stability of the membrane potential and artificial lipid membranes as the taste sensing elements. The sensor responses to the standard taste substances showed high accuracy and good reproducibility, which is comparable with the performance of the sensor probe of the commercialized taste sensing system. Thus, the fabricated taste sensor chip could be used as a key element for the realization of a portable-type taste sensing system

    NK cells control tumor-promoting function of neutrophils in mice

    Get PDF
    Although NK cells are recognized as direct antitumor effectors, the ability of NK cells to control cancer-associated inflammation, which facilitates tumor progression, remains unknown. In this study, we demonstrate that NK cells control tumor-promoting inflammation through functional modification of neutrophils. NK cells control the tumor-promoting function of neutrophils through an IFNgamma-dependent mechanism. Tumor progression in an NK cell-depleted host is diminished when the IL17A-neutrophil axis is absent. In NK cell-depleted mice, neutrophils acquire a tumor-promoting phenotype, characterized by up-regulation of VEGF-A expression, which promotes tumor growth and angiogenesis. A VEGFR inhibitor which preferentially suppressed tumor growth in NK cell-depleted mice was dependent on neutrophils. Furthermore, the systemic neutropenia caused by an anti-metabolite treatment showed an anti-cancer effect only in mice lacking NK cells. Thus, NK cells likely control the tumor-promoting and angiogenic function of neutrophils

    Surrounding Gastric Mucosa Findings Facilitate Diagnosis of Gastric Neoplasm as Gastric Adenoma or Early Gastric Cancer

    Get PDF
    Background and Aim. It is difficult to master the skill of discriminating gastric adenoma from early gastric cancer by conventional endoscopy or magnifying endoscopy combined with narrow-band imaging, because the colors and morphologies of these neoplasms are occasionally similar. We focused on the surrounding gastric mucosa findings in order to determine how to discriminate between early gastric cancer and gastric adenoma by analyzing the characteristics of the gastric background mucosa. Methods. We retrospectively examined 146 patients who underwent endoscopic submucosal dissection for gastric neoplasm between October 2009 and January 2015. The boundary of atrophic gastritis was classified endoscopically according to the Kimura-Takemoto classification system. Of 146 lesions, 63 early gastric cancers and 21 gastric adenomas were ultimately evaluated and assessed. Results. Almost all gastric adenomas were accompanied by open-type gastritis, whereas 47 and 16 early gastric cancers were accompanied by open-type and closed-type gastritis, respectively (p = 0.037). Conclusions. The evaluation of the boundary of atrophic gastritis associated with gastric neoplasms appears to be useful for discrimination between early gastric cancer and gastric adenoma. When gastric neoplasm is present in the context of surrounding localized gastric atrophy, gastric cancer is probable but not certain

    Gene expression profiling of loss of TET2 and/or JAK2V617F mutant hematopoietic stem cells from mouse models of myeloproliferative neoplasms

    Get PDF
    AbstractMyeloproliferative neoplasms (MPNs) are clinically characterized by the chronic overproduction of differentiated peripheral blood cells and the gradual expansion of malignant intramedullary/extramedullary hematopoiesis. In MPNs mutations in JAK2 MPL or CALR are detected mutually exclusive in more than 90% of cases [1,2]. Mutations in them lead to the abnormal activation of JAK/STAT signaling and the autonomous growth of differentiated cells therefore they are considered as “driver” gene mutations. In addition to the above driver gene mutations mutations in epigenetic regulators such as TET2 DNMT3A ASXL1 EZH2 or IDH1/2 are detected in about 5%–30% of cases respectively [3]. Mutations in TET2 DNMT3A EZH2 or IDH1/2 commonly confer the increased self-renewal capacity on normal hematopoietic stem cells (HSCs) but they do not lead to the autonomous growth of differentiated cells and only exhibit subtle clinical phenotypes [4,6–8,5]. It was unclear how mutations in such epigenetic regulators influenced abnormal HSCs with driver gene mutations how they influenced the disease phenotype or whether a single driver gene mutation was sufficient for the initiation of human MPNs. Therefore we focused on JAK2V617F and loss of TET2—the former as a representative of driver gene mutations and the latter as a representative of mutations in epigenetic regulators—and examined the influence of single or double mutations on HSCs (Lineage−Sca-1+c-Kit+ cells (LSKs)) by functional analyses and microarray whole-genome expression analyses [9]. Gene expression profiling showed that the HSC fingerprint genes [10] was statistically equally enriched in TET2-knockdown-LSKs but negatively enriched in JAK2V617F–LSKs compared to that in wild-type-LSKs. Double-mutant-LSKs showed the same tendency as JAK2V617F–LSKs in terms of their HSC fingerprint genes but the expression of individual genes differed between the two groups. Among 245 HSC fingerprint genes 100 were more highly expressed in double-mutant-LSKs than in JAK2V617F–LSKs. These altered gene expressions might partly explain the mechanisms of initiation and progression of MPNs which was observed in the functional analyses [9]. Here we describe gene expression profiles deposited at the Gene Expression Omnibus (GEO) under the accession number GSE62302 including experimental methods and quality control analyses

    Mice with Calr mutations homologous to human CALR mutations only exhibit mild thrombocytosis

    Get PDF
    Shide, K., Kameda, T., Kamiunten, A. et al. Mice with Calr mutations homologous to human CALR mutations only exhibit mild thrombocytosis. Blood Cancer J. 9, 42 (2019). https://doi.org/10.1038/s41408-019-0202-

    Corrigendum: Use of the index of pulmonary vascular disease for predicting longterm outcome of pulmonary arterial hypertension associated with congenital heart disease

    Get PDF

    Use of the index of pulmonary vascular disease for predicting long-term outcome of pulmonary arterial hypertension associated with congenital heart disease

    Get PDF
    AimsLimited data exist on risk factors for the long-term outcome of pulmonary arterial hypertension (PAH) associated with congenital heart disease (CHD-PAH). We focused on the index of pulmonary vascular disease (IPVD), an assessment system for pulmonary artery pathology specimens. The IPVD classifies pulmonary vascular lesions into four categories based on severity: (1) no intimal thickening, (2) cellular thickening of the intima, (3) fibrous thickening of the intima, and (4) destruction of the tunica media, with the overall grade expressed as an additive mean of these scores. This study aimed to investigate the relationship between IPVD and the long-term outcome of CHD-PAH.MethodsThis retrospective study examined lung pathology images of 764 patients with CHD-PAH aged <20 years whose lung specimens were submitted to the Japanese Research Institute of Pulmonary Vasculature for pulmonary pathological review between 2001 and 2020. Clinical information was collected retrospectively by each attending physician. The primary endpoint was cardiovascular death.ResultsThe 5-year, 10-year, 15-year, and 20-year cardiovascular death-free survival rates for all patients were 92.0%, 90.4%, 87.3%, and 86.1%, respectively. The group with an IPVD of ≥2.0 had significantly poorer survival than the group with an IPVD <2.0 (P = .037). The Cox proportional hazards model adjusted for the presence of congenital anomaly syndromes associated with pulmonary hypertension, and age at lung biopsy showed similar results (hazard ratio 4.46; 95% confidence interval: 1.45–13.73; P = .009).ConclusionsThe IPVD scoring system is useful for predicting the long-term outcome of CHD-PAH. For patients with an IPVD of ≥2.0, treatment strategies, including choosing palliative procedures such as pulmonary artery banding to restrict pulmonary blood flow and postponement of intracardiac repair, should be more carefully considered

    A Formula to Compute Implied Volatility, with Error Estimate

    Get PDF
    corecore