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We derive a simple formula to compute implied volatility approximately, and give an estimate of its relative
error, in the framework developed by Black-Scholes. In particular, our error estimate ensures that the relative error
of our formula is converging to 0 under certain condition.
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1. Introduction

Since introduced by Black-Scholes [1] in 1973, Black-Scholes model has been one of the most well-used models in
mathematical finance, especially to European options. For the sake of simplicity, let us consider the case with no
dividend. Then in the framework of Black-Scholes model, the value of a European call option on a stock is given by

C ¼ SNðd1Þ � Xe�rTNðd2Þ; ð1:1Þ

with

d1 ¼
logðS=XÞ þ ðr þ �2=2ÞT

�
ffiffiffiffi
T

p ;

d2 ¼
logðS=XÞ þ ðr � �2=2ÞT

�
ffiffiffiffi
T

p ¼ d1 � �
ffiffiffiffi
T

p
;

where Nð�Þ stands for the standard normal distribution function:

NðxÞ ¼
Z x

�1

1ffiffiffiffiffiffi
2�

p e�
u2

2 du:

Here, the commodity price, strike price, interest rate and the maturity are denoted by S, X, r and T , respectively,
and � represents the volatility, the instantaneous standard deviation of the commodity log-price.

Note that in this model, all model parameters except the volatility are directly observable from market. In practical
use, it is always important to estimate the volatility appeared in this model quickly and precisely.

As volatility is the only unknown parameter, by solving the nonlinear equation (1.1) with respect to �, with the
price of the option given by the practical one decided by the market, we can get implied volatility, which in turn can be
used to decide the theoretical price of the other options with the same commodity. Since originally suggested by
Latane-Rendleman [4] in 1976, implied volatility has been extensively used in financial research.

Unfortunately, a closed-form solution for an implied volatility of (1.1) is unknown. An numerical solution can be
obtained by iterative algorithms, e.g., by using Newton approximation, with the help of computer. However, as pointed
out by many authors, iterative algorithms have many shortages such as the error-proneness of the calculation and the
cumbersomeness of the spreadsheet implementation, etc. Therefore, it is important to find a formula of the
approximated implied volatility.

This problem has been discussed by many authors, e.g., Brenner-Subrahmanyan [2] considered the case
when the discounted strike price is exactly equal to the present stock price, and Corrado-Miller [3] extended the result.
By experimenting using real data, [3] claimed that their approximation is accurate enough in the domain 0:9 < � < 1:1
if the maturity is longer than 3 months, and in the domain 0:95 < � < 1:05 if the maturity is longer than 1 month,
where � is the ratio of the commodity price to the discounted strike price. However, as far as the authors know, there is
no result about the error estimate of the approximation, which guarantees the correctness and the accurateness
theoretically.
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In this paper, we give a new approximation of the implied volatility, with an error estimate for it, under certain
condition. Note that our idea of the error estimate lies on the precedure of our approximation essentially (see Section 3
for details), and can not be applied directly to the one given in [3].

Our main idea is as follows: Instead of using Taylor expansions of Nðd1Þ and Nðd2Þ around 0 from the beginning, we
first expand them around d3 ¼ ðd1 þ d2Þ=2. Since d3, when compared to 0, is much closer to d1 and d2 under our
assumption, we get an expansion with less error. In particular, by doing so, we are able to get rid of the factor 1

1��.
Notice that as it is common that � is around 1, the factor 1

1�� will enlarge the error, and is not so desirable.
(See Section 3 for details).

In the rest of this paper, we derive our formula of the approximated implied volatility in section 2; and in Section 3,
we give an estimate of the relative error for it.

2. Approximate Solution

In this section, we give the formula of our approximation of implied volatility. As declared in Section 1, our aim is as
follows: Find an approximation of the solution � of (1.1), with every parameter except � given. The error estimate of it
will be given in Section 3.

We first prepare some notations for simplication. Let � ¼ 1
2
�

ffiffiffiffi
T

p
, � ¼ Xe�rT

S
, D ¼ C

ð1��ÞS, and m ¼ � ð1þ�Þ log �
1�� . Note

that in practice, we only need to discuss the problem with � around 1 and � around 0. Also, in this case, m is around 2.
Actually, by a simple calculation, we have m 2 ð2; 3Þ if � 2 ð0:1; 1Þ and m 2 ð2; 2:1Þ if � 2 ð1; 2Þ. From now on, we
assume that � 2 ð0:1; 2Þ.

With the notations above, we have d1 ¼ � log �
2� þ � and d2 ¼ � log �

2� � �. Let d3 ¼ � log �
2� . Then d1 ¼ d3 þ � and

d2 ¼ d3 � �. Divide both sides of (1.1) by 1� �, and we get that

D ¼
1

1� �
Nðd3 þ �Þ � �Nðd3 � �Þ
� �

: ð2:1Þ

Note that by definition, � ¼ � log �
2d3

.
Now, our problem is very clear: find an approximate solution of (2.1) with respect to d3, with � and D given.
From now on, we assume that (the real value of) d3 is close to 0 enough and that �

jd3j � 1. (This certainly implies that
� is close to 1, therefore, our global assumption � 2 ð0:1; 2Þ is satisfied.) More precise expression of the domain will be
discussed later.

Let g1ðd3Þ denote the right hand side of (2.1), i.e.,

g1ðd3Þ ¼
1

1� �
Nðd3 þ �Þ � �Nðd3 � �Þ
� �

: ð2:2Þ

So the real value of d3 is the solution of the equation g1ðd3Þ ¼ D with respect to d3.
In the following, we find an approximation g3 of the function g1, and use the solution ed3d3 of the equation g3ðd3Þ ¼ D

as our approximation of d3. (So we abuse the notation a little bit by using d3 as a variable for a moment instead of the
real value decided by the volatility).

As mentioned in Section 1, instead of expanding around 0, we expand Nðd1Þ and Nðd2Þ around d3 at first.

Nðd1Þ ¼ Nðd3Þ þ N 0ðd3Þ�þ R2;

Nðd2Þ ¼ Nðd3Þ � N 0ðd3Þ�þ ~RR2;

�
ð2:3Þ

where R2 and ~RR2 are the second remainders of the corresponding Taylor expansions, and can be expressed as

R2 ¼
1

2
N 00ðkÞ�2; ~RR2 ¼

1

2
N 00ðlÞ�2 ð2:4Þ

with some number k between d1 and d3, and some number l between d2 and d3. Substitute (2.3) into (2.2), and
we get that

g1ðd3Þ ¼ Nðd3Þ þ
1þ �

1� �
N 0ðd3Þ�þ

R2 � � ~RR2

1� �
: ð2:5Þ

Let g2ðd3Þ denote the main part of the right hand side of (2.5), i.e.,

g2ðd3Þ ¼ Nðd3Þ þ
1þ �

1� �
N 0ðd3Þ�: ð2:6Þ

Now, Taylor expansions of Nðd3Þ and N 0ðd3Þ around 0 lead to

Nðd3Þ ¼
1

2
þ

d3ffiffiffiffiffiffi
2�

p þ Q3;

N 0ðd3Þ ¼
1ffiffiffiffiffiffi
2�

p �
d23

2
ffiffiffiffiffiffi
2�

p þ ~QQ4;

8>>><>>>: ð2:7Þ
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where Q3 and ~QQ4 are the third and the fourth remainders of the corresponding Taylor expansions, respectively.
By a simple calculation, we have the following estimate with respect to Q3 and ~QQ4.

jQ3j �
jd3j3

6
ffiffiffiffiffiffi
2�

p ; j ~QQ4j �
d43

8
ffiffiffiffiffiffi
2�

p : ð2:8Þ

Actually, Taylor expansion of Q3 around 0 gives us that

Nðd3Þ ¼ Nð0Þ þ N 0ð0Þd3 þ
1

2
N 00ð0Þd23 þ

1

3!
N 000ð�Þd33 ð2:9Þ

with some � between 0 and d3. By the definition of NðxÞ, we have that N 0ðxÞ ¼ 1ffiffiffiffi
2�

p e�
x2

2 , N 00ðxÞ ¼ � 1ffiffiffiffi
2�

p xe�
x2

2 , hence
Nð0Þ ¼ 1

2
, N 0ð0Þ ¼ 1ffiffiffiffi

2�
p and N 00ð0Þ ¼ 0. Also, N 000ðxÞ ¼ � 1ffiffiffiffi

2�
p e�

x2

2 ð1� x2Þ, so by a simple calculation, we have
jN 000ðxÞj � 1ffiffiffiffi

2�
p for any x 2 R. Substituting these to (2.9), we get the first estimate in (2.8). The second estimate in (2.8)

can be gotten in the same way. (2.8) will be used in Section 3.
Substituting (2.7) into (2.6), we get that

g2ðd3Þ ¼ Nðd3Þ þ ð1þ �Þ �
�

1� �
N 0ðd3Þ

¼
1

2
þ

d3ffiffiffiffiffiffi
2�

p þ Q3

� �
þ

m

2d3

1ffiffiffiffiffiffi
2�

p �
d23

2
ffiffiffiffiffiffi
2�

p þ ~QQ4

� �
¼

1

2
þ

4� m

4
ffiffiffiffiffiffi
2�

p d3 þ
m

2
ffiffiffiffiffiffi
2�

p
1

d3
þ Q3 þ

m

2d3
~QQ4

� �
: ð2:10Þ

Let g3ðd3Þ be the main part of the right hand side of (2.10), i.e.,

g3ðd3Þ ¼
1

2
þ

4� m

4
ffiffiffiffiffiffi
2�

p d3 þ
m

2
ffiffiffiffiffiffi
2�

p
1

d3
: ð2:11Þ

Notice that if we multiple by d3 both sides of the equation g3ðd3Þ ¼ D, we get a quadratic equation with respect to d3,
which can be solved easily and precisely, with the two solutions given by

�
ffiffiffiffiffiffi
2�

p
ð1� 2DÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1� 2DÞ2 � 2mð4� mÞ

p
4� m

: ð2:12Þ

Recall that the real value of d3 is the solution of the equation g1ðd3Þ ¼ D. Since g3 is an approximation of g1, it is
natural to use the solution of g3ðd3Þ ¼ D as an approximation of d3. Now, we shall make a decision: which branch of
(2.12) should be used?

Our policy is simple: if the two solutions have different signs, take the one that has the same sign with d3; if they
have the same sign, take the one with small absolute value. We do so because we are looking for an approximation of
d3, which has small absolute value, as assumed. By Lemma 3.1 below, we have that the following decided ed3d3 satisfies
this condition.

ed3d3 ¼
�

ffiffiffiffiffiffi
2�

p
ð1� 2DÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1� 2DÞ2 � 2mð4� mÞ

p
4� m

; 0:1 < � < 1,

�
ffiffiffiffiffiffi
2�

p
ð1� 2DÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1� 2DÞ2 � 2mð4� mÞ

p
4� m

; 1 < � < 2.

8>>><>>>: ð2:13Þ

or equivalently, we also have the following expression by a simple calculation.

ed3d3 ¼
2m

�
ffiffiffiffiffiffi
2�

p
ð1� 2DÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1� 2DÞ2 � 2mð4� mÞ

p ; 0:1 < � < 1,

�2mffiffiffiffiffiffi
2�

p
ð1� 2DÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1� 2DÞ2 � 2mð4� mÞ

p ; 1 < � < 2.

8>>><>>>: ð2:14Þ

We use this as our desired approximation of d3.
With ed3d3 given, since � ¼ � log �ffiffiffi

T
p 1

d3
by definition, our approximation e�� of � is naturally given by e�� ¼ � log �ffiffiffi

T
p 1

~d3d3
.

3. Error Estimate

In this section, we give an estimate of the relative error of our approximation given in Section 2.
Notice that j ~����

� j ¼ j ~����
� j ¼ j ~d3d3�d3

~d3d3
j. We estimate the latest expression in the following.

We first show the following.

Lemma 3.1. 1. Assume that 0 < d3 < 1, 0:1 < � < 1 and D > 1
2
ð1þ

ffiffiffiffiffi
15
2�

p
Þ. Then 0 < ed3d3 < 1.

2. Assume that �1 < d3 < 0, 1 < � < 2 and D < 1
2
ð1�

ffiffiffiffiffi
25
4�

p
Þ. Then �1 < ed3d3 < 0.
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Remark 3.2. The conditions with respect to � in Lemma 3.1 are always satisfied if d3 (hence also �, as � � jd3j by
assumption) is close enough to 0, since � log � ¼ 2�d3 by definition.

Remark 3.3. The conditions with respect to D in Lemma 3.1, i.e., D > 1
2
ð1þ

ffiffiffiffiffi
15
2�

p
Þ and D < 1

2
ð1�

ffiffiffiffiffi
25
4�

p
Þ in the

corresponding cases, are always satisfied if d3 (hence � by assumption) is close enough to 0.
Actually, since D ¼ g1ðd3Þ by definition, we have

jDj ¼ jg3ðd3Þ � g3ðd3Þ þ g1ðd3Þj � jg3ðd3Þj � jg3ðd3Þ � g1ðd3Þj:

When d3 and � converge to 0, we have by the definition of g3 that the term jg3ðd3Þj converges to þ1, while by
Lemma 3.4 below, the term jg3ðd3Þ � g1ðd3Þj converges to 0. Therefore, jDj ! 1. Also, notice that D > 0 if
0:1 < � < 1, and D < 0 if 1 < � < 2. This completes the proof of our assertion.

Proof. Since the proofs are similar, we only give the proof of the first assertion.
By assumption D > 1

2
ð1þ

ffiffiffiffiffi
15
2�

p
Þ, we have ð1� 2DÞ2 > 15

2�. This combined with the assumption 2 < m < 3

implies ð1� 2DÞ2 > 15
2� > mð8�mÞ

2� , hence 2�ð1� 2DÞ2 � 2mð4� mÞ > m2, which in turn implies 0 < m <ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1� 2DÞ2 � 2mð4� mÞ

p
. Therefore,

0 <
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�ð1� 2DÞ2 � 2mð4� mÞ
p < 1: ð3:1Þ

On the other hand, it is easy to be seen that

�
ffiffiffiffiffiffi
2�

p
ð1� 2DÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1� 2DÞ2 � 2mð4� mÞ

q
> 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1� 2DÞ2 � 2mð4� mÞ

q
:

Combining this with (3.1), we get

0 < ed3d3 ¼ 2m

�
ffiffiffiffiffiffi
2�

p
ð1� 2DÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1� 2DÞ2 � 2mð4� mÞ

p
<

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1� 2DÞ2 � 2mð4� mÞ

p < 1:

This gives us our first assertion. �

By Lemma 3.1, we have that ed3d3 and d3 always have the same sign. Also, it is easy to be seen by the definition of g3
that g3 is continuously differentiable on R n f0g. So by mean value theorem, there exists a constant c between d3 and ed3d3
such that

g3ðd3Þ � g3ðed3d3Þ ¼ g03ðcÞðd3 � ed3d3Þ: ð3:2Þ

Notice that by definition, we have g3ðed3d3Þ ¼ D ¼ g1ðd3Þ. Combining this with (3.2), we get that

jd3 � ed3d3j ¼ 1

jg03ðcÞj
jg3ðd3Þ � g3ðed3d3Þj

¼
1

jg03ðcÞj
jg3ðd3Þ � g1ðd3Þj: ð3:3Þ

This transformation, although simple, is important in our error estimate. It helps us to transform the quantity
involving both d3 and ed3d3, which is difficult to be handled, to the one involving d3 only. Notice that by our constitution,
g3 is nothing but (twice) Taylor approximation of g1.

Let ðAÞ ¼ jg3ðd3Þ � g1ðd3Þj and ðBÞ ¼ 1
jg0

3
ðcÞj. We estimate them respectively in the following.

We first have the following result with respect to ðAÞ.

Lemma 3.4.

ðAÞð¼ jg3ðd3Þ � g1ðd3ÞjÞ �
17

48
ffiffiffiffiffiffi
2�

p jd3j3 þ
3

2
ffiffiffiffiffiffi
2�

p �:

Proof. We first have

jg3ðd3Þ � g1ðd3Þj � jg1ðd3Þ � g2ðd3Þj þ jg2ðd3Þ � g3ðd3Þj: ð3:4Þ

For the first term on the right hand side of (3.4), we have by (2.5), (2.6) and (2.4) that
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jg1ðd3Þ � g2ðd3Þj ¼
R2 � � ~RR2

1� �

���� ����
¼

1

1� �

N 00ðkÞ
2

�2 � �
N 00ðlÞ
2

�2
� ����� ����

¼
�2

2ð1� �Þ
�

1ffiffiffiffiffiffi
2�

p ke�k2=2 þ
�ffiffiffiffiffiffi
2�

p le�l2=2

� ����� ����
�

�2

2j1� �j
jkj þ �jljffiffiffiffiffiffi

2�
p

� �
�

�2

2j1� �j
ð1þ �Þðjd3j þ �Þffiffiffiffiffiffi

2�
p

¼
m

2
ffiffiffiffiffiffi
2�

p �
2�

j�log �j
�
ðjd3j þ �Þ�

2
¼

m

2
ffiffiffiffiffiffi
2�

p �
1

2jd3j
ðjd3j þ �Þ�

¼
m

4
ffiffiffiffiffiffi
2�

p � 1þ
�

jd3j

� �
� �

m

2
ffiffiffiffiffiffi
2�

p �; ð3:5Þ

where in the fourth line, we used the fact that jkj; jlj � jd3j þ �, and when passing to the last line, we used the
assumption � � jd3j.

Also, for the second term on the right hand side of (3.4), we have by (2.10), (2.11) and (2.8) that

jg2ðd3Þ � g3ðd3Þj ¼ Q3 þ
m

2d3
~QQ4

���� ���� � jQ3j þ
m

2d3
~QQ4

���� ����
�

d33

6
ffiffiffiffiffiffi
2�

p
���� ����þ m

16
ffiffiffiffiffiffi
2�

p d33

���� ���� ¼ jd3j3
1

6
ffiffiffiffiffiffi
2�

p þ
m

16
ffiffiffiffiffiffi
2�

p
� �

: ð3:6Þ

Combining the above and the fact that 2 < m < 3, we get our assertion. �

Especially, by Lemma 3.4, we have that ðAÞ ! 0 as jd3j ! 0 (hence � ! 0).
We next deal with the term ðBÞ.

Lemma 3.5. Assume condition in (1) or (2) of Lemma 3.1. Then we have the following.

ðBÞ ¼
1

jg03ðcÞj

� �
� 2

ffiffiffiffiffiffi
2�

p
ðd23 þ ed3d32Þ:

Proof. Differentiate both sides of (2.11), we get that

g03ðxÞ ¼
4� m

4
ffiffiffiffiffiffi
2�

p �
m

2
ffiffiffiffiffiffi
2�

p
1

x2
:

So the solution of g03ðxÞ ¼ 0 is given by �� with � ¼
ffiffiffiffiffiffiffiffi
2m
4�m

p
. Since m 2 ð2; 3Þ, we have � >

ffiffiffi
2

p
, in particular, � > 1.

So jg03ðxÞj is monotone decreasing for x 2 ð0; 1Þ, and monotone increasing for x 2 ð�1; 0Þ. Also, c is between d3 and ed3d3.
So by Lemma 3.1, we get

jg03ðcÞj � minfjg03ðd3Þj; jg
0
3ðed3d3Þjg: ð3:7Þ

Also, since m 2 ð2; 3Þ, we have that for any x 2 ð�1; 0Þ [ ð0; 1Þ,

jg03ðxÞj ¼
4� m

4
ffiffiffiffiffiffi
2�

p �
m

2
ffiffiffiffiffiffi
2�

p
1

x2

���� ���� ¼ m

2
ffiffiffiffiffiffi
2�

p
1

x2
�

4� m

4
ffiffiffiffiffiffi
2�

p �
m

4
ffiffiffiffiffiffi
2�

p
1

x2

�
1

2
ffiffiffiffiffiffi
2�

p
1

x2
:

Therefore,

1

jg03ðxÞj
� 2

ffiffiffiffiffiffi
2�

p
x2; for any x 2 ð�1; 0Þ [ ð0; 1Þ: ð3:8Þ

By (3.7) and (3.8), we get

ðBÞ ¼
1

jg03ðcÞj
�

1

jg03ðd3Þj
þ

1

jg03ðed3d3Þj � 2
ffiffiffiffiffiffi
2�

p
ðd23 þ ed3d32Þ:

This completes the proof of our assertion. �

Now, we are ready to give the following estimate of the relative error j ~d3d3�d3
~d3d3

j.

A Formula to Compute Implied Volatility, with Error Estimate 271



Lemma 3.6. Assume condition in (1) or (2) of Lemma 3.1. Also, assume that ðAÞ < 1
4
ffiffiffiffi
2�

p . Then we have the following.ed3d3 � d3ed3d3
�����

����� � 8
ffiffiffiffiffiffi
2�

p
ðAÞ:

Remark 3.7. By Lemma 3.4, ðAÞ ! 0 as �; jd3j ! 0. So the condition ðAÞ < 1
4
ffiffiffiffi
2�

p is always satisfied if jd3j
(hence �) is small enough.

Proof. Let Y ¼ j ~d3d3�d3
~d3d3

j. Then since jd3j < 1 by assumption, we have by (3.3) and Lemmas 3.4, 3.5 that

Y ¼
1

jed3d3j 1

jg03ðcÞj
jg3ðd3Þ � g1ðd3Þj

�
ðAÞ
jed3d3j � 2

ffiffiffiffiffiffi
2�

p
ðd23 þ ed3d32Þ

¼ 2
ffiffiffiffiffiffi
2�

p
ðAÞ jed3d3j þ jd3j �

d3 � ed3d3ed3d3 þ 1

�����
�����

 !
� 2

ffiffiffiffiffiffi
2�

p
ðAÞðjd3j þ jed3d3jÞ þ 2

ffiffiffiffiffiffi
2�

p
ðAÞY : ð3:9Þ

We have by condition ðAÞ < 1

4
ffiffiffiffi
2�

p , so by solving (3.9) with respect to Y , we get that

Y �
2
ffiffiffiffiffiffi
2�

p
ðAÞðjd3j þ jed3d3jÞ

1� 2
ffiffiffiffiffiffi
2�

p
ðAÞ

�
4
ffiffiffiffiffiffi
2�

p
ðAÞ

1� 2
ffiffiffiffiffiffi
2�

p
ðAÞ

� 8
ffiffiffiffiffiffi
2�

p
ðAÞ;

where in the second inequality, we used the fact that d3; ed3d3 2 ð0; 1Þ [ ð�1; 0Þ. �

Combining Lemmas 3.4, 3.6 and Remarks 3.3, 3.7, we get the following, our main result with respect to the relative
error estimate of our approximation given in Section 2.

Theorem 3.8. There exist constants �0 > 0 and d0 > 0 such that

d3 � ed3d3ed3d3
�����

����� � 17

6
jd3j3 þ 12�: ð3:10Þ

as long as � 2 ð0; �0� and d3 2 ½�d0; 0Þ [ ð0; d0�.

When jd3j (hence �) converges to 0, it is trivial that the right hand side of (3.10) converges to 0, therefore,
by Theorem 3.8, we get that the relative error of our appromation ed3d3, hence that of e��, given in Section 2, converges
to 0.
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