62 research outputs found

    The use of toxicokinetics and exposure studies to show that carprofen in cattle tissue could lead to secondary toxicity and death in wild vultures

    Get PDF
    Veterinary medicines can be extremely damaging to the environment, as seen with the catastrophic declines in Gyps vulture in South Asia due to their secondary exposure to diclofenac in their primary food source. Not surprisingly, concern has been raised over other similar drugs. In this study, we evaluate the toxicity of carprofen to the Gyps vulture clade through plasma pharmacokinetics evaluations in Bos taurus cattle (their food source) and Gyps africanus (a validated model species); tissue residues in cattle; and the effect of carprofen as a secondary toxicant as both tissue-bound residue or pure drug at levels expected in cattle tissues. Carprofen residues were highest in cattle kidney (7.72 ± 2.38 mg/kg) and injection site muscle (289.05 ± 98.96 mg/kg of dimension of 5 × 5 × 5 cm). Vultures exposed to carprofen as residues in the kidney tissue or pure drug equivalents showed no toxic signs. When exposed to average injection site concentrations (64 mg/kg) one of two birds died with evidence of severe renal and liver damage. Toxicokinetic analysis revealed a prolonged drug half-life of 37.75 h in the dead bird as opposed to 13.99 ± 5.61 h from healthy birds dosed intravenously at 5 mg/kg. While carprofen may generally be harmless to Gyps vultures, its high levels at the injection site in treated cattle can result in lethal exposure in foraging vultures, due to relative small area of tissue it is found therein. We thus suggest that carprofen not be used in domesticated ungulates in areas where carcasses are accessible or provided to vultures at supplementary feeding sites.The Royal Society for the Protection of Birds and the Chester Zoo.http://www.elsevier.com/locate/chemosphere2019-01-01hj2018Paraclinical Science

    Characterisation of microsatellite loci in silver carp and cross amplification in other cyprinid species

    Get PDF
    Captive populations of silver carp (Hypophthalmichthys molitrix), a major aquaculture species in Asia, would undoubtedly benefit from genetic monitoring and improvement programs. We report the isolation and preliminary characterization of 16 microsatellite loci derived from both conventional and microsatellite-enriched libraries. Inheritance studies confirmed the allelic nature of observed polymorphisms at all loci, while identifying null alleles at two loci. These loci, having varying degrees of polymorphism, should provide useful markers for applied genetic studies. A high degree of cross-amplification among 10 other cyprinid species suggests that these loci may have more widespread utility

    A direct measurement of the 17O(α,γ)21Ne reaction in inverse kinematics and its impact on heavy element production

    Get PDF
    During the slow neutron capture process in massive stars, reactions on light elements can both produce and absorb neutrons thereby influencing the final heavy element abundances. At low metallicities, the high neutron capture rate of 16O can inhibit s-process nucleosynthesis unless the neutrons are recycled via the 17O(α,n)20Ne reaction. The efficiency of this neutron recycling is determined by competition between the 17O(α,n)20Ne and 17O(α,γ)21Ne reactions. While some experimental data are available on the former reaction, no data exist for the radiative capture channel at the relevant astrophysical energies. The 17O(α,γ)21Ne reaction has been studied directly using the DRAGON recoil separator at the TRIUMF Laboratory. The reaction cross section has been determined at energies between 0.6 and 1.6 MeV Ecm, reaching into the Gamow window for core helium burning for the first time. Resonance strengths for resonances at 0.63, 0.721, 0.81 and 1.122 MeV Ecm have been extracted. The experimentally based reaction rate calculated represents a lower limit, but suggests that significant s-process nucleosynthesis occurs in low metallicity massive stars

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely

    Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease

    Get PDF
    One in ten severe acute respiratory syndrome coronavirus 2 infections result in prolonged symptoms termed long coronavirus disease (COVID), yet disease phenotypes and mechanisms are poorly understood1. Here we profiled 368 plasma proteins in 657 participants ≥3 months following hospitalization. Of these, 426 had at least one long COVID symptom and 233 had fully recovered. Elevated markers of myeloid inflammation and complement activation were associated with long COVID. IL-1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in gastrointestinal symptoms and C1QA was elevated in cognitive impairment. Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) were elevated in those with cognitive impairment and SCG3, suggestive of brain–gut axis disturbance, was elevated in gastrointestinal symptoms. Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin G (IgG) was persistently elevated in some individuals with long COVID, but virus was not detected in sputum. Analysis of inflammatory markers in nasal fluids showed no association with symptoms. Our study aimed to understand inflammatory processes that underlie long COVID and was not designed for biomarker discovery. Our findings suggest that specific inflammatory pathways related to tissue damage are implicated in subtypes of long COVID, which might be targeted in future therapeutic trials

    Lead contamination and associated disease in captive and reintroduced red kites Milvus milvus in England

    No full text
    Since 1989, a red kite Milvus milvus reintroduction programme has been underway in the United Kingdom, with 4–6 week old nestlings brought into captivity and held for 6–8 weeks before reintroduction. As scavengers, red kites may consume unretrieved game, and ingest shot or lead (Pb) fragments in their prey's flesh. We evaluated exposure to Pb in captive and wild red kites by taking blood samples from 125 captive young red kites prior to release, through analysing 264 pellets (regurgitated by wild birds) collected from under a roost site, and analysing Pb concentrations in livers and/or bones of 87 red kites found dead between 1995 and 2003. Lead isotope analyses of livers were also conducted in an effort to identify Pb exposure routes. Forty-six (36.8%) kites sampled prior to release had elevated blood Pb concentrations (201–3340 μg l− 1). The source of this Pb was probably small fragments of lead ammunition in the carcasses of birds or mammals either fed to the nestlings by their parents or, more likely, subsequently whilst in captivity. Once released, kites were also exposed to lead shot in their food, and a minimum of 1.5–2.3% of regurgitated pellets contained Pb gunshot. Seven of 44 red kites found dead or that were captured sick and died within a few days had elevated (> 6 mg kg− 1 dry weight [d.w.]) liver Pb concentrations, and six of these (14%) had concentrations of > 15 mg kg− 1 d.w., compatible with fatal Pb poisoning. Post-mortem analyses indicated that two of these birds had died of other causes (poisoning by rodenticide and a banned agricultural pesticide); the remaining four (9%) probably died of Pb poisoning. Bone samples from 86 red kites showed a skewed distribution of Pb concentration, and 18 samples (21%) had Pb concentrations > 20 mg kg− 1 d.w., indicating elevated exposure to Pb at some stage in the birds’ life. Lead isotopic signatures (Pb 208/206; Pb 206/207) in liver samples of the majority of kites were compatible with those found in lead shot extracted from regurgitated pellets. Lead isotope ratios found in the livers of kites with very low Pb concentrations were distinct from UK petrol Pb isotopic signatures, indicating that birds were exposed to little residual petrol Pb. We conclude that the primary source of Pb to which red kites are exposed is lead ammunition (shotgun pellets or rifle bullets), or fragments thereof, in their food sources; in some cases exposure appears sufficient to be fatal. We make recommendations to reduce Pb poisoning in both captive and wild red kites and other scavenging species
    • …
    corecore