78 research outputs found

    Assessment of genetically modified maize Bt11 x MIR162 x MIR604 x MON 89034 x 5307 x GA21 for food and feed uses, import and processing under Regulation (EC) No 1829/2003 (application EFSA-GMO-DE-2018-149)

    Get PDF
    Bt11 x MIR162 x MIR604 x MON 89034 x 5307 x GA21 was produced by conventional breeding of the GM maize events Bt11, MIR162, MIR604, MON 89034, 5307 and GA21. Accordingly, Bt11 x MIR162 x MIR604 x MON 89034 x 5307 x GA21 maize produces the transgenic proteins in the individual GM maize events (Cry1Ab, PAT, Vip3Aa20, PMI, mCry3A, MIR604 PMI, Cry1A.105, Cry2Ab2, eCry3.1Ab and mEPSPS). Event Bt11 maize expresses the insecticidal protein Cry1Ab that protects against feeding damage caused by certain lepidopteran pests and the phosphinothricin acetyltransferase (PAT) protein for weed control by providing tolerance to herbicide products containing glufosinate ammonium. Event MIR162 maize expresses the insecticidal protein Vip3Aa20 that protects against feeding damage caused by certain lepidopteran pests and the PMI protein which enables transformed plant cells to utilise mannose as a primary carbon source and therefore used as a selectable marker in the development of the MIR162 maize. Event MIR604 maize expresses the insecticidal protein mCry3A that protects against feeding damage caused by certain coleopteran pests and the MIR604 PMI protein which enables transformed plant cells to utilise mannose as a primary carbon source and therefore used as a selectable marker in the development of the MIR604 maize. Event MON 89034 maize expresses the insecticidal proteins Cry1A.105 and Cry2Ab2 that protect against feeding damage caused by certain lepidopteran pests. Event 5307 maize expresses the insecticidal protein eCry3.1Ab that protects against feeding damage caused by certain coleopteran pests and the PMI protein which enables transformed plant cells to utilise mannose as a primary carbon source and therefore used as a selectable marker in the development of the 5307 maize. Event GA21 expresses the double-mutated 5-enolpyruvylshikimate-3-phosphate synthase enzyme (mEPSPS) for weed control by providing tolerance to herbicide products containing glyphosate.The scientific documentation provided in the application for genetically modified maize Bt11 x MIR162 x MIR604 x MON 89034 x 5307 x GA21 is adequate for risk assessment, and in accordance with EFSA guidance on risk assessment of genetically modified plants for use in food or feed. The VKM GMO panel does not consider the introduced modifications in maize Bt11 x MIR162 x MIR604 x MON 89034 x 5307 x GA21 to imply potential specific health or environmental risks in Norway, compared to EU-countries The EFSA opinion is adequate also for Norwegian considerations. Therefore, a full risk assessment of maize Bt11 x MIR162 x MIR604 x MON 89034 x 5307 x GA21 was not performed by the VKM GMO Panel.Assessment of genetically modified maize Bt11 x MIR162 x MIR604 x MON 89034 x 5307 x GA21 for food and feed uses, import and processing under Regulation (EC) No 1829/2003 (application EFSA-GMO-DE-2018-149)publishedVersio

    Microarray-based method for detection of unknown genetic modifications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to the increased use of genetic modifications in crop improvement, there is a need to develop effective methods for the detection of both known and unknown transgene constructs in plants. We have developed a strategy for detection and characterization of unknown genetic modifications and we present a proof of concept for this method using <it>Arabidopsis thaliana </it>and <it>Oryza sativa </it>(rice). The approach relies on direct hybridization of total genomic DNA to high density microarrays designed to have probes tiled throughout a set of reference sequences.</p> <p>Results</p> <p>We show that by using arrays with 25 basepair probes covering both strands of a set of 235 vectors (2 million basepairs) we can detect transgene sequences in transformed lines of <it>A. thaliana </it>and rice without prior knowledge about the transformation vectors or the T-DNA constructs used to generate the studied plants.</p> <p>Conclusion</p> <p>The approach should allow the user to detect the presence of transgene sequences and get sufficient information for further characterization of unknown genetic constructs in plants. The only requirements are access to a small amount of pure transgene plant material, that the genetic construct in question is above a certain size (here ≥ 140 basepairs) and that parts of the construct shows some degree of sequence similarity with published genetic elements.</p

    Scandinavian perspectives on plant gene technology: applications, policies and progress

    Get PDF
    Plant research and breeding has a long and successful history in the Scandinavian countries, Denmark, Finland, Norway and Sweden. Researchers in the region have been early in adopting plant gene technologies as they developed. This review gives a background, as well as discuss the current and future progress of plant gene technology in these four countries. Country-specific details of the regulation of genetically modified plants are described, as well as similarities and differences in the approach to regulation of novel genome-editing techniques. Also, the development of a sustainable bioeconomy may encompass the application of plant gene technology and we discuss whether or not this is reflected in current associated national strategies. In addition, country-specific information about the opinion of the public and other stakeholders on plant gene technology is presented, together with a country-wise political comparison and a discussion of the potential reciprocal influence between public opinion and the political process of policy development. The Scandinavian region is unique in several aspects, such as climate and certain agriculturally related regulations, and at the same time the region is vulnerable to changes in plant breeding investments due to the relatively small market sizes. It is therefore important to discuss the role and regulation of innovative solutions in Scandinavian plant research and breeding.Peer reviewe

    Assessment of genetically modified soybean MON 87701 for food and feed uses, import and processing under Regulation (EC) No 1829/2003 (renewal application EFSA-GMO-RX-021)

    Get PDF
    Event MON 87701 is a genetically modified soybean developed via Agrobacterium tumefaciens transformation. MON 87701 plants contain the transgene cry1Ac which encodes the protein Cry1Ac. The protein Cry1Ac provides resistance against specific lepidopteran pests. The scientific documentation provided in the renewal application (EFSA-GMO-RX-021) for soybean MON 87701 is adequate for risk assessment, and in accordance with EFSA guidance on risk assessment of genetically modified plants for use in food or feed. The VKM GMO panel does not consider the introduced modifications in soybean MON 87701 to imply potential specific health or environmental risks in Norway, compared to EU-countries. The EFSA opinion is adequate also for Norwegian considerations. Therefore, a full risk assessment of event MON 87701 was not performed by the VKM GMO Panel.Assessment of genetically modified soybean MON 87701 for food and feed uses, import and processing under Regulation (EC) No 1829/2003 (renewal application EFSA-GMO-RX-021)publishedVersio

    Assessment of genetically modified maize MON 95379 for food and feed uses, import and processing under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐NL‐2020‐170)

    Get PDF
    Event MON 95379 is a genetically modified maize developed by a two-step process. In the first step, immature embryos of maize inbred line LH244 were co-cultured with a disarmed Agrobacterium tumefaciens (also known as Rhizobium radiobacter) strain ABI containing the vector PV-ZMIR522223. In the second step, selected R2 lines were crossed with maize inbred LH244 line expressing Crerecombinase, which had been transformed with vector PVZMOO513642. In the resulting plants, the CP4 EPSPS-cassette (used for selection of transformed plants) was excised by the Cre recombinase, and the Cre gene was subsequently segregated away, through conventional breeding, to obtain maize MON 95379. Maize MON 95379 expresses Cry1B.868, a chimeric protein containing domains from Cry1A, Cry1B and Cry1C naturally expressed in Bacillus thuringiensis, and Cry1Da_7, an optimised version of Cry1Da carrying four amino acids substitutions to increase its activity. The two Cry proteins expressed in maize MON 95379 provide protection against targeted pests within the order of butterflies and moths (Lepidoptera) including fall armyworm (Spodoptera frugiperda), sugarcane borer (Diatraea saccharalis) and corn earworm (Helicoverpa zea). The scientific documentation provided in the application for genetically modified maize MON 95379 is adequate for risk assessment, and in accordance with EFSA guidance on risk assessment of genetically modified plants for use in food or feed. The VKM GMO panel does not consider the introduced modifications in event MON 95379 to imply potential specific health or environmental risks in Norway, compared to EU-countries. The EFSA opinion is adequate also for Norwegian considerations. Therefore, a full risk assessment of event MON 95379 was not performed by the VKM GMO Panel.Assessment of genetically modified maize MON 95379 for food and feed uses, import and processing under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐NL‐2020‐170)publishedVersio

    Transcriptional profiling of defense responses to Botrytis cinerea infection in leaves of Fragaria vesca plants soil-drenched with β-aminobutyric acid

    Get PDF
    Grey mold caused by the necrotrophic fungal pathogen Botrytis cinerea can affect leaves, flowers, and berries of strawberry, causing severe pre- and postharvest damage. The defense elicitor β-aminobutyric acid (BABA) is reported to induce resistance against B. cinerea and many other pathogens in several crop plants. Surprisingly, BABA soil drench of woodland strawberry (Fragaria vesca) plants two days before B. cinerea inoculation caused increased infection in leaf tissues, suggesting that BABA induce systemic susceptibility in F. vesca. To understand the molecular mechanisms involved in B. cinerea susceptibility in leaves of F. vesca plants soil drenched with BABA, we used RNA sequencing to characterize the transcriptional reprogramming 24 h post-inoculation. The number of differentially expressed genes (DEGs) in infected vs. uninfected leaf tissue in BABA-treated plants was 5205 (2237 upregulated and 2968 downregulated). Upregulated genes were involved in pathogen recognition, defense response signaling, and biosynthesis of secondary metabolites (terpenoid and phenylpropanoid pathways), while downregulated genes were involved in photosynthesis and response to auxin. In control plants not treated with BABA, we found a total of 5300 DEGs (2461 upregulated and 2839 downregulated) after infection. Most of these corresponded to those in infected leaves of BABA-treated plants but a small subset of DEGs, including genes involved in ‘response to biologic stimulus‘, ‘photosynthesis‘ and ‘chlorophyll biosynthesis and metabolism’, differed significantly between treatments and could play a role in the induced susceptibility of BABA-treated plants.publishedVersio

    Assessment of genetically modified maize MON 87429 for food and feed uses, import and processing under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2019-161)

    Get PDF
    Event MON 87429 is a genetically modified maize developed via Agrobacterium tumefaciens transformation. MON 87429 plants contain the transgenes pat, dmo, ft_t and cp4 epsps. Maize MON 87429 encodes the DMO, PAT and FT_T proteins. In addition, maize MON 87429 encodes the CP4 EPSPS protein and utilises an endogenous maize RNAi regulatory element to suppress its expression in pollen. This results in a lack of viable pollen and thus male sterility when MON 87429 plants are exposed to glyphosate-containing herbicides at growth stages ranging from V8 to V13. This is part of a hybridisation system to be used in inbred lines to facilitate the hybrid seeds production. This is not considered an agronomic trait since the application of glyphosate outside the specific growth stages does not lead to male sterile plants but reduces plant yield compared to plants not expressing the same trait. The scientific documentation provided in the application for genetically modified maize MON 87429 is adequate for risk assessment, and in accordance with EFSA guidance on risk assessment of genetically modified plants for use in food or feed. The VKM GMO panel does not consider the introduced modifications in event MON 87429 to imply potential specific health or environmental risks in Norway, compared to EU-countries. The EFSA opinion is adequate also for Norwegian considerations. Therefore, a full risk assessment of event MON87429 was not performed by the VKM GMO PanelAssessment of genetically modified maize MON 87429 for food and feed uses, import and processing under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2019-161)publishedVersio
    corecore