1,920 research outputs found

    Dissociation Dynamics of CIONO_2 and Relative Cl and ClO Product Yields following Photoexcitation at 308 nm

    Get PDF
    Chlorine nitrate photolysis at 308 nm has been investigated with a molecular beam technique. Two primary decomposition pathways, leading to Cl + NO_3 and ClO + NO_2, were observed. The branching ratio between these two respective channels was determined to be 0.67 ± 0.06 : 0.33 ± 0.06. This ratio is an upper limit because some of the ClO photoproducts may have undergone secondary photodissociation. The angular distributions of the photoproducts with respect to the direction of polarization of the exciting light were anisotropic. The anisotropy parameters were β= 0.5 ± 0.2 for the Cl + NO_3 channel and β= 1.1 ± 0.2 for the ClO + NO_2 channel, indicating that dissociation of ClONO_2 by either pathway occurs within a rotational period. Weak signal at mass-to-charge ratios of 35 and 51, arising from products with laboratory velocities close to the beam velocity, was observed. While this signal could result from statistical dissociation channels with a total relative yield of 0.07 or less, it is more likely attributable to products from ClO secondary photodissociation or from dissociation of clusters

    Needle-free injection into skin and soft matter with highly focused microjets

    Get PDF
    The development of needle-free drug injection systems is of great importance to global healthcare. However, in spite of its great potential and research history over many decades, these systems are not commonly used. One of the main problems is that existing methods use diffusive jets, which result in scattered penetration and severe deceleration of the jets, causing frequent pain and insufficient penetration. Another longstanding challenge is the development of accurate small volume injections. In this paper we employ a novel method of needle-free drug injection, using highly-focused high speed microjets, which aims to solve these challenges. We experimentally demonstrate that these unique jets are able to penetrate human skin: the focused nature of these microjets creates an injection spot smaller than a mosquito's proboscis and guarantees a high percentage of the liquid being injected. The liquid substances can be delivered to a much larger depth than conventional methods, and create a well-controlled dispersion pattern. Thanks to the excellent controllability of the microjet, small volume injections become feasible. Furthermore, the penetration dynamics is studied through experiments performed on gelatin mixtures (human soft tissue equivalent) and human skin, agreeing well with a viscous stress model which we develop. This model predicts the depth of the penetration into both human skin and soft tissue. The results presented here take needle-free injections a step closer to widespread use

    Involvement of fatty acid pathways and cortical interaction of the pronuclear complex in Caenorhabditis elegans embryonic polarity.

    Get PDF
    BACKGROUND: Cell polarity is essential for many decisions made during development. While investigation of polarity-specific factors has yielded great insights into the polarization process, little is known on how these polarity-specific factors link to the basic cellular mechanisms that function in non-polarity aspects of the cell. To better understand the mechanisms that establish embryonic polarity, we investigated genes required for polarity in the one-cell C. elegans embryo that are also required for other non-polarity functions. This has led to the identification of the Pod-class of mutants that are characterized by osmosensitive embryos and defects in anterior-posterior polarity. RESULTS: Mutation in either of two loci of this class, emb-8 and pod-2, disrupts embryonic polarization and results in osmotically-sensitive embryos. Loss of emb-8, a previously uncharacterized polarity gene, causes mislocalization of PAR-3 and PAR-2 that molecularly mark the anterior and posterior cortices. emb-8 encodes NADPH-cytochrome P450 reductase, a protein supplying electrons to cytochrome P450-family enzymes, some of which catalyze fatty acid modifications. Cloning of the previously characterized polarity gene pod-2 reveals it encodes acetyl-CoA carboxylase, an enzyme that catalyzes the first step in de novo fatty acid synthesis. Depletion of fatty acid synthase, the next enzyme in the biosynthetic pathway, by RNA-interference (RNAi) also causes similar loss of one-cell polarity. Furthermore, pod-2 polarity defects can be rescued by addition of exogenous fatty acids. By following the behavior of the pronucleus in emb-8 and pod-2 mutant embryos, we demonstrate that loss of polarity correlates with impaired interaction between the pronucleus-centrosome complex and the posterior cortex. CONCLUSIONS: The characterization of emb-8 and pod-2 mutant embryos suggests that the pronucleus-centrosome complex interaction with the cortex plays a direct role in establishing polarity and that fatty acid pathways are important for this polarizing event.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Soliton excitations in halogen-bridged mixed-valence binuclear metal complexes

    Full text link
    Motivated by recent stimulative observations in halogen (X)-bridged binuclear transition-metal (M) complexes, which are referred to as MMX chains, we study solitons in a one-dimensional three-quarter-filled charge-density-wave system with both intrasite and intersite electron-lattice couplings. Two distinct ground states of MMX chains are reproduced and the soliton excitations on them are compared. In the weak-coupling region, all the solitons are degenerate to each other and are uniquely scaled by the band gap, whereas in the strong-coupling region, they behave differently deviating from the scenario in the continuum limit. The soliton masses are calculated and compared with those for conventional mononuclear MX chains.Comment: 9 pages, 10 figures embedded, to be published in J. Phys. Soc. Jpn. 71, No. 1 (2002

    Implementing Parallel Differential Evolution on Spark

    Get PDF
    [Abstract] Metaheuristics are gaining increased attention as an efficient way of solving hard global optimization problems. Differential Evolution (DE) is one of the most popular algorithms in that class. However, its application to realistic problems results in excessive computation times. Therefore, several parallel DE schemes have been proposed, most of them focused on traditional parallel programming interfaces and infrastruc- tures. However, with the emergence of Cloud Computing, new program- ming models, like Spark, have appeared to suit with large-scale data processing on clouds. In this paper we investigate the applicability of Spark to develop parallel DE schemes to be executed in a distributed environment. Both the master-slave and the island-based DE schemes usually found in the literature have been implemented using Spark. The speedup and efficiency of all the implementations were evaluated on the Amazon Web Services (AWS) public cloud, concluding that the island- based solution is the best suited to the distributed nature of Spark. It achieves a good speedup versus the serial implementation, and shows a decent scalability when the number of nodes grows.[Resumen] Las metaheurísticas están recibiendo una atención creciente como técnica eficiente en la resolución de problemas difíciles de optimización global. Differential Evolution (DE) es una de las metaheurísticas más populares, sin embargo su aplicación en problemas reales deriva en tiempos de cómputo excesivos. Por ello se han realizado diferentes propuestas para la paralelización del DE, en su mayoría utilizando infraestructuras e interfaces de programación paralela tradicionales. Con la aparición de la computación en la nube también se han propuesto nuevos modelos de programación, como Spark, que permiten manejar el procesamiento de datos a gran escala en la nube. En este artículo investigamos la aplicabilidad de Spark en el desarrollo de implementaciones paralelas del DE para su ejecución en entornos distribuidos. Se han implementado tanto la aproximación master-slave como la basada en islas, que son las más comunes. También se han evaluado la aceleración y la eficiencia de todas las implementaciones usando el cloud público de Amazon (AWS, Amazon Web Services), concluyéndose que la implementación basada en islas es la más adecuada para el esquema de distribución usado por Spark. Esta implementación obtiene una buena aceleración en relación a la implementación serie y muestra una escalabilidad bastante buena cuando el número de nodos aumenta.[Resume] As metaheurísticas están recibindo unha atención a cada vez maior como técnica eficiente na resolución de problemas difíciles de optimización global. Differential Evolution (DE) é unha das metaheurísticas mais populares, ainda que a sua aplicación a problemas reais deriva en tempos de cómputo excesivos. É por iso que se propuxeron diferentes esquemas para a paralelización do DE, na sua maioría utilizando infraestruturas e interfaces de programación paralela tradicionais. Coa aparición da computación na nube tamén se propuxeron novos modelos de programación, como Spark, que permiten manexar o procesamento de datos a grande escala na nube. Neste artigo investigamos a aplicabilidade de Spark no desenvolvimento de implementacións paralelas do DE para a sua execución en contornas distribuidas. Implementáronse tanto a aproximación master-slave como a baseada en illas, que son as mais comúns. Tamén se avaliaron a aceleración e a eficiencia de todas as implementacións usando o cloud público de Amazon (AWS, Amazon Web Services), tirando como conclusión que a implementación baseada en illas é a mais acaida para o esquema de distribución usado por Spark. Esta implementación obtén unha boa aceleración en relación á implementación serie e amosa unha escalabilidade bastante boa cando o número de nos aumenta.Ministerio de Economía y Competitividad; DPI2014-55276-C5-2-RXunta de Galicia; GRC2013/055Xunta de Galicia; R2014/04

    Targeting the absence: Homozygous DNA deletions as immutable signposts for cancer therapy

    Get PDF
    Many cancers harbor homozygous DNA deletions (HDs). In contrast to other attributes of cancer cells, their HDs are immutable features that cannot change during tumor progression or therapy. I describe an approach, termed deletion-specific targeting (DST), that employs HDs (not their effects on RNA/protein circuits, but deletions themselves) as the targets of cancer therapy. The DST strategy brings together both existing and new methodologies, including the ubiquitin fusion technique, the split-ubiquitin assay, zinc-finger DNA-recognizing proteins and split restriction nucleases. The DST strategy also employs a feedback mechanism that receives input from a circuit operating as a Boolean OR gate and involves the activation of split nucleases, which destroy DST vector in normal (nontarget) cells. The logic of DST makes possible an incremental and essentially unlimited increase in the selectivity of therapy. If DST strategy can be implemented in a clinical setting, it may prove to be curative and substantially free of side effects

    The clinical and therapeutic uses of MDM2 and PSMA and their potential interaction in aggressive cancers

    Get PDF
    Prostate-specific membrane antigen (PSMA) overexpression is observed in the neovasculature of solid tumors, but not in the vasculature of normal tissues. Increased PSMA expression is positively associated with tumor stage and grade, although its function in cancer remains unclear. Mouse double minute 2 (MDM2) is a negative regulator of the p53 tumor suppressor and is reported to regulate VEGF expression and angiogenesis. Both proteins have been considered as biomarkers and therapeutic targets for advanced solid tumors. Our work and a recent microarray-based gene profiling study suggest there could be signaling interplay between MDM2 and PSMA. We herein review the mechanisms underlining the outgrowth of tumors associated with PSMA and MDM2, their potential interaction and how this may be applied to anticancer therapeutics
    corecore