1,132 research outputs found

    Histopathological and parasitological study of the gastrointestinal tract of dogs naturally infected with Leishmania infantum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to provide a systematic pathological and parasitological overview of the gastrointestinal tract (GIT), including the stomach, duodenum, jejunum, ileum, caecum and colon, of dogs naturally infected with <it>Leishmania</it>.</p> <p>Methods</p> <p>Twenty mongrel dogs naturally infected with <it>Leishmania (Leishmania) infantum </it>and obtained from the Control Zoonosis Center of the Municipality of Ribeirão das Neves, Belo Horizonte Metropolitan area, Minas Gerais (MG) state, Brazil, were analyzed. The dogs were divided into two groups: Group 1 comprised nine clinically normal dogs and group 2 comprised 11 clinically affected dogs. After necropsy, one sample was collected from each GIT segment, namely the stomach, duodenum, jejunum, ileum, caecum and colon. Furthermore, paraffin-embedded samples were used for histological and parasitological (immunohistochemistry) evaluation and a morphometrical study were carried out to determine the parasite load (immunolabeled amastigote forms of <it>Leishmania</it>). The Friedman and the Mann Whitney tests were used for statistical analysis. The Friedman test was used to analyze each segment of the GIT within each group of dogs and the Mann Whitney test was used to compare the GIT segments between clinically unaffected and affected dogs.</p> <p>Results</p> <p>The infected dogs had an increased number of macrophages, plasma cells and lymphocytes, but lesions were generally mild. Parasite distribution in the GIT was evident in all intestinal segments and layers of the intestinal wall (mucosal, muscular and submucosal) irrespective of the clinical status of the dogs. However, the parasite load was statistically higher in the caecum and colon than in other segments of the GIT.</p> <p>Conclusion</p> <p>The high parasite burden evident throughout the GIT mucosa with only mild pathological alterations led us to consider whether <it>Leishmania </it>gains an advantage from the intestinal immunoregulatory response (immunological tolerance).</p

    An electron microscope study of Trypanosorna cruzi intracellular forms in mice treated with an active nitrofuran compound

    Get PDF

    Observation of mesoscopic conductance fluctuations in YBaCuO grain boundary Josephson Junctions

    Full text link
    Magneto-fluctuations of the normal resistance R_N have been reproducibly observed in high critical temp erature superconductor (HTS) grain boundary junctions, at low temperatures. We attribute them to mesoscopic transport in narrow channels across the grain boundary line. The Thouless energy appears to be the relevant energy scale. Our findings have significant implications on quasiparticle relaxation and coherent transport in HTS grain boundaries.Comment: Revised version, minor changes. 4 pages, 4 figure

    Influence of Topological Edge States on the Properties of Al/Bi2Se3/Al Hybrid Josephson Devices

    Get PDF
    In superconductor-topological insulator-superconductor hybrid junctions, the barrier edge states are expected to be protected against backscattering, to generate unconventional proximity effects, and, possibly, to signal the presence of Majorana fermions. The standards of proximity modes for these types of structures have to be settled for a neat identification of possible new entities. Through a systematic and complete set of measurements of the Josephson properties we find evidence of ballistic transport in coplanar Al-Bi2Se3-Al junctions that we attribute to a coherent transport through the topological edge state. The shunting effect of the bulk only influences the normal transport. This behavior, which can be considered to some extent universal, is fairly independent of the specific features of superconducting electrodes. A comparative study of Shubnikov - de Haas oscillations and Scanning Tunneling Spectroscopy gave an experimental signature compatible with a two dimensional electron transport channel with a Dirac dispersion relation. A reduction of the size of the Bi2Se3 flakes to the nanoscale is an unavoidable step to drive Josephson junctions in the proper regime to detect possible distinctive features of Majorana fermions.Comment: 11 pages, 14 figure

    Metabolic reprogramming promotes myogenesis during aging

    Get PDF
    Sarcopenia is the age-related progressive loss of skeletal muscle mass and strength finally leading to poor physical performance. Impaired myogenesis contributes to the pathogenesis of sarcopenia, while mitochondrial dysfunctions are thought to play a primary role in skeletal muscle loss during aging. Here we studied the link between myogenesis and metabolism. In particular, we analyzed the effect of the metabolic modulator trimetazidine (TMZ) on myogenesis in aging. We show that reprogramming the metabolism by TMZ treatment for 12 consecutive days stimulates myogenic gene expression in skeletal muscle of 22-month-old mice. Our data also reveal that TMZ increases the levels of mitochondrial proteins and stimulates the oxidative metabolism in aged muscles, this finding being in line with our previous observations in cachectic mice. Moreover, we show that, besides TMZ also other types of metabolic modulators (i.e., 5-Aminoimidazole-4-Carboxamide Ribofuranoside-AICAR) can stimulate differentiation of skeletal muscle progenitors in vitro. Overall, our results reveal that reprogramming the metabolism stimulates myogenesis while triggering mitochondrial proteins synthesis in vivo during aging. Together with the previously reported ability of TMZ to increase muscle strength in aged mice, these new data suggest an interesting non-invasive therapeutic strategy which could contribute to improving muscle quality and neuromuscular communication in the elderly, and counteracting sarcopenia

    Macroscopic quantum tunnelling in spin filter ferromagnetic Josephson junctions.

    Get PDF
    The interfacial coupling of two materials with different ordered phases, such as a superconductor (S) and a ferromagnet (F), is driving new fundamental physics and innovative applications. For example, the creation of spin-filter Josephson junctions and the demonstration of triplet supercurrents have suggested the potential of a dissipationless version of spintronics based on unconventional superconductivity. Here we demonstrate evidence for active quantum applications of S-F-S junctions, through the observation of macroscopic quantum tunnelling in Josephson junctions with GdN ferromagnetic insulator barriers. We show a clear transition from thermal to quantum regime at a crossover temperature of about 100 mK at zero magnetic field in junctions, which present clear signatures of unconventional superconductivity. Following previous demonstration of passive S-F-S phase shifters in a phase qubit, our result paves the way to the active use of spin filter Josephson systems in quantum hybrid circuits.We acknowledge financial support from COST Action MP1201 [NanoSC COST], by Progetto FIRB HybridNanoDev RBFR1236VV001 and by Regione Campania through POR Campania FSE 2007/2013, progetto MASTRI CUP B25B09000010007.This is the final version. It was first published by NPG at http://www.nature.com/ncomms/2015/150609/ncomms8376/full/ncomms8376.html#abstract

    Dissipation in ultra-thin current-carrying superconducting bridges; evidence for quantum tunneling of Pearl vortices

    Full text link
    We have made current-voltage (IV) measurements of artificially layered high-TcT_c thin-film bridges. Scanning SQUID microscopy of these films provides values for the Pearl lengths Λ\Lambda that exceed the bridge width, and shows that the current distributions are uniform across the bridges. At high temperatures and high currents the voltages follow the power law VInV \propto I^n, with n=Φ02/8π2ΛkBT+1n=\Phi_0^2/8\pi^2\Lambda k_B T+1, and at high temperatures and low-currents the resistance is exponential in temperature, in good agreement with the predictions for thermally activated vortex motion. At low temperatures, the IV's are better fit by lnV\ln V linear in I2I^{-2}. This is expected if the low temperature dissipation is dominated by quantum tunneling of Pearl vortices.Comment: 5 pages, 7 fig

    High critical-current density and scaling of phase-slip processes in YBaCuO nanowires

    Full text link
    YBaCuO nanowires were reproducibly fabricated down to widths of 50 nm. A Au/Ti cap layer on YBCO yielded high electrical performance up to temperatures above 80 K in single nanowires. Critical current density of tens of MA/cm2 at T = 4.2 K and of 10 MA/cm2 at 77 K were achieved that survive in high magnetic fields. Phase-slip processes were tuned by choosing the size of the nanochannels and the intensity of the applied external magnetic field. Data indicate that YBCO nanowires are rather attractive system for the fabrication of efficient sensors, supporting the notion of futuristic THz devices.Comment: 8 pages, 3 figures. Accepted for publication in Superconductor Science and Technolog

    The Aladin2 experiment: status and perspectives

    Full text link
    Aladin2 is an experiment devoted to the first measurement of variations of Casimir energy in a rigid cavity. The main scientific motivation relies on the possibility of the first demonstration of a phase transition influenced by vacuum fluctuations. The guiding principle of the measurement, based on the behaviour of the critical field for an in-cavity superconducting film, will be only briefly recalled. In this paper, after an introduction to the long term motivations, the experimental apparatus and the results of the first measurement of sensitivity will be presented in detail, particularly in comparison with the expected signal. Last, the most important steps towards the final measurement will be discussed.Comment: Talk given by Calloni at QFEXT05 Conference in Barcelona: Quantum Field Theory Under the Influence of External Condition

    Breast cancer mass detection in dce-mri using deep-learning features followed by discrimination of infiltrative vs. in situ carcinoma through a machine-learning approach

    Get PDF
    Breast cancer is the leading cause of cancer deaths worldwide in women. This aggressive tumor can be categorized into two main groups-in situ and infiltrative, with the latter being the most common malignant lesions. The current use of magnetic resonance imaging (MRI) was shown to provide the highest sensitivity in the detection and discrimination between benign vs. malignant lesions, when interpreted by expert radiologists. In this article, we present the prototype of a computer-aided detection/diagnosis (CAD) system that could provide valuable assistance to radiologists for discrimination between in situ and infiltrating tumors. The system consists of two main processing levels-(1) localization of possibly tumoral regions of interest (ROIs) through an iterative procedure based on intensity values (ROI Hunter), followed by a deep-feature extraction and classification method for false-positive rejection; and (2) characterization of the selected ROIs and discrimination between in situ and invasive tumor, consisting of Radiomics feature extraction and classification through a machine-learning algorithm. The CAD system was developed and evaluated using a DCE-MRI image database, containing at least one confirmed mass per image, as diagnosed by an expert radiologist. When evaluating the accuracy of the ROI Hunter procedure with respect to the radiologist-drawn boundaries, sensitivity to mass detection was found to be 75%. The AUC of the ROC curve for discrimination between in situ and infiltrative tumors was 0.70
    corecore