
applied  
sciences

Article

Breast Cancer Mass Detection in DCE–MRI Using
Deep-Learning Features Followed by Discrimination
of Infiltrative vs. In Situ Carcinoma through a
Machine-Learning Approach

Luana Conte 1,2 , Benedetta Tafuri 1,2,* , Maurizio Portaluri 3, Alessandro Galiano 4,
Eleonora Maggiulli 5 and Giorgio De Nunzio 1,2

1 Laboratory of Biomedical Physics and Environment, Department of Mathematics and Physics “E. De Giorgi”,
University of Salento, 73100 Lecce, Italy; luana.conte@unisalento.it (L.C.);
giorgio.denunzio@unisalento.it (G.D.N.)

2 Advanced Data Analysis in Medicine (ADAM), Laboratory of Interdisciplinary Research Applied to
Medicine (DReAM), University of Salento and ASL (Local Health Authority), 73100 Lecce, Italy

3 Operative Unit of Radiotherapy, ASL (Local Health Authority), Brindisi, and ‘Di Summa-Perrino’ Hospital,
72100 Brindisi, Italy; m.portaluri@asl.brindisi.it

4 Operative Unit of Radiodiagnostics, ASL (Local Health Authority), Brindisi,
and ‘Di Summa-Perrino’ Hospital, 72100 Brindisi, Italy; alessgaliano@yahoo.it

5 Operative Unit of Medical Physics, ASL (Local Health Authority), Brindisi,
and ‘Di Summa-Perrino’ Hospital, 72100 Brindisi, Italy; eleonora.maggiulli@asl.brindisi.it

* Correspondence: benedetta.tafuri@gmail.com

Received: 6 August 2020; Accepted: 29 August 2020; Published: 3 September 2020
����������
�������

Featured Application: Automatic CAD system in detecting tumors as a valuable support to
radiologists for detection and characterization of breast cancers in dynamic contrast-enhanced
magnetic resonance imaging (DCE–MRI) images.

Abstract: Breast cancer is the leading cause of cancer deaths worldwide in women. This aggressive
tumor can be categorized into two main groups—in situ and infiltrative, with the latter being
the most common malignant lesions. The current use of magnetic resonance imaging (MRI) was
shown to provide the highest sensitivity in the detection and discrimination between benign vs.
malignant lesions, when interpreted by expert radiologists. In this article, we present the prototype
of a computer-aided detection/diagnosis (CAD) system that could provide valuable assistance to
radiologists for discrimination between in situ and infiltrating tumors. The system consists of two
main processing levels—(1) localization of possibly tumoral regions of interest (ROIs) through an
iterative procedure based on intensity values (ROI Hunter), followed by a deep-feature extraction
and classification method for false-positive rejection; and (2) characterization of the selected ROIs and
discrimination between in situ and invasive tumor, consisting of Radiomics feature extraction and
classification through a machine-learning algorithm. The CAD system was developed and evaluated
using a DCE–MRI image database, containing at least one confirmed mass per image, as diagnosed
by an expert radiologist. When evaluating the accuracy of the ROI Hunter procedure with respect to
the radiologist-drawn boundaries, sensitivity to mass detection was found to be 75%. The AUC of the
ROC curve for discrimination between in situ and infiltrative tumors was 0.70.

Keywords: breast cancer; Radiomics; machine learning; deep learning; segmentation;
in situ breast cancer; infiltrative breast cancer
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1. Introduction

Breast cancer (BC) is one of the most common malignant tumors as well as the leading cause of
mortality among women worldwide. In Italy, BC affected about 53,000 new cases out of a total of
175,000 cases of all female cancers in 2019 [1]. BC can be classified into two main types—in situ and
invasive. Based on cytological characteristics and growth patterns, the in situ type is further subdivided
into ductal and lobular, located within the ductal or lobular epithelium, respectively. Ductal carcinoma
in situ (DCIS) is more common than lobular carcinoma in situ (LCIS), accounting for 30–50% of all
detected BCs [2,3], and normally does not infiltrate through the basal membrane. On the other hand,
the invasive ductal carcinoma (IDC) is the most common malignant lesion, accounting for approximately
70% of all malignant cases [4,5]. Treatment choice is different between in situ and IDC (e.g., for the
latter, the identification of the sentinel lymph node is required, which is not for the former, see the
“National Comprehensive Cancer Network Guidelines—Breast Cancer” at https://www.nccn.org/

professionals/physician_gls/pdf/breast.pdf). Moreover, clinical outcomes are worse for the invasive
disease. Consequently, women might need to undergo additional surgical options if an invasive disease
is missed.

In the current clinical imaging practice, the use of Magnetic Resonance Imaging (MRI) has a
high sensitivity and strongly improves tumor mass detection and discrimination between benign and
malignant lesions [6–10]. Naturally, breast MRI scans must be interpreted by experienced radiologists,
as these examinations are often used to improve the outcome of the surgical practice, by reducing
the number of re-excisions, allowing patient selection for neoadjuvant chemotherapy or therapy
modification, as well as representing a technique of choice for pre-surgical assessment of residual
tumor size, to determine breast conservation surgery candidacy [6].

In this scenario, a new field of research called Radiomics is becoming increasingly popular,
with the general aim being a conversion of all information contained in digital medical images into
quantifiable features. The latter are normally related to tumor size, shape, pixel intensity, and texture
associated with clinical outcomes and prognosis, defining a proper tumor Radiomics signature [11].
The usage of Radiomics signatures can lead to a remarkable improvement of detection rate [12,13].

Starting from the above considerations, the aim of this study was to develop a software system
that is able to differentiate in situ infiltration of BT in dynamic contrast-enhanced (DCE–MRI) images,
based on lesion Radiomics signature. Preliminary results of this work, on a smaller dataset, with a
partially different approach, and without the segmentation step, are reported in [14].

The problem of distinguishing invasive from in situ BC is debated in a few papers in the specific
literature. In [15], Radiomics features are extracted from DCE–MRI scans (190 IDC and 58 DCIS) and
are used to train a random forest classifier in a leave-one-out cross-validation scheme. AUC of the ROC
curve was 0.90. A Radiomics signature of 569 features was tested by Li et al. [16] in mammographic
images; the dataset was composed of 161 DCIS and 89 IDC and their best result was AUC = 0.72. In [17],
the apparent diffusion coefficient (ADC) computed from diffusion-weighted MRI (DWI) was used to
distinguish invasive from in situ DCIS. DWI characterizes tissue diffusivity, therefore it provides a
description of tissue micro-structure [18,19]. The rationale was that invasive breast cancer spreads
by degrading the tissue structure through proteolytic activity—the chronic inflammatory reaction to
proteolysis causes the reduction of extra-cell water content, with a consequent reduction of ADC if
compared to in situ tumors. In order to test the hypothesis, in [17], a dataset of 21 DCIS and 155 IDC
was employed and a significant difference in ADC values between the two groups was found (p < 0.001
and AUC = 0.89). A Radiomics approach in DCE–MR images, using combined computer-extracted MR
imaging kinetic and morphologic features, was tested by Bhooshan et al. [20] (in a dataset containing
32 benign, 71 DCIS, and 150 IDC cases), obtaining AUC = 0.83. Finally, deep learning was tried
in [21], with the purpose of predicting invasive cancer after DCIS diagnosis. They used a transfer
learning approach, in which a pre-trained GoogleNet was used to calculate features in 131 MRI images,
then training a support vector machine (SVM). The result was AUC = 0.70.

https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf
https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf
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The Radiomics calculations to classify tumors as in situ or infiltrative must be performed in a region
of interest (ROI) containing the tumor tissue [22]. For this reason, a necessary pre-processing step is
manual or (semi)automatic segmentation (contouring) of the lesions, separating the tumor from normal
tissue in the image. Breast tumor segmentation, especially in DCE–MRI images, is still a challenging
task in the clinical setting, although it is necessary in some circumstances, e.g., when tumor-response
prediction to chemotherapy is assessed [23–25]. Automating this procedure would help radiologists
to reduce their manual workload on image analysis, as they normally perform tumor diagnosis by
locating lesions layer-by-layer, and that is an arduous and time-consuming task [26].

Different image segmentation methods in MRIs were proposed in the past decades but no
optimal method exists yet. The simplest pixel-based approaches generally rely on thresholding
the image intensity and grouping individual pixels through appropriate classifiers. For example,
Tzacheva et al. [27] determined the boundary of the suspected tumor on the assumption that the lesion
intensity range was 110–140 on the 0–255 scale, so they simply applied a threshold for obtaining a
binary image. The use of thresholding for breast tumor segmentation was also used by Fusco et al. [28]
through the exploitation of intensity differences between the pixels, before and after providing contrast,
followed by morphological post-processing steps. Fuzzy C Means (FCM) clustering [26] and its various
versions [29,30] is also one of the prevailing methods, due to its simplicity [26] in isolating suspicious
lesions. Another popular method is the classic k-means used for segmenting the lesion [31,32].

Other typical techniques used for lesion segmentation are region-based methods. Adams and
Bischof [33] proposed the algorithm of seeded region growing (SRG) and its advancement [34], which begins
by determining the seed (or set of seeds) from which growth starts. Then, SRG grows these seeds into regions
by successively adding surrounding pixels, until all pixels are assigned to one region. Other region-based
methods exploit the watershed algorithm, followed by post-processing steps [35,36].

Contour-based methods are also much used in the task of breast lesion segmentation, especially in
case of active-contours of the lesion boundary. A recent work [37] describes an interactive segmentation
method for BC lesions in DCE–MRI images, based on the active contour without edges (ACWE)
algorithm and using parallel programming with general purpose computing on graphics processing
units (GPGPU). The ACWE was able to segment objects with low gradient information in their
boundaries. The performance of this algorithm was evaluated on a set of 32 breast DCE–MRI cases in
terms of speed-up, and compared to non-GPU based approach. A high speed-up (40 or more) was
obtained for high-resolution images, providing real-time outputs.

Sun et al. [38] proposed a semi-supervised method for breast tumor segmentation. After image
segmentation with advanced clustering techniques, they performed a supervised learning step, based on
texture features and mean intensity levels, to classify the tumor and non-tumor patches, in order to
automatically locate the tumor regions in an MRI image.

These manual or semi-automatic tumor annotation techniques are generally the most used [26,39],
although these approaches are often time-consuming and can drive user variability. In addition,
they often need manual delineation of ROIs as a first step, requiring expert knowledge in advance.
On the contrary, breast tumor segmentation using deep learning approaches was recently used in
some medical imaging applications [40–42] and showed promise in automatic lesion segmentation.
El Adoui et al. [40], used two deep learning architectures, SegNet and U-Net [43,44] for the detection
and segmentation of 86 breast DCE–MRI images. These two CNN architectures were successfully
applied to biomedical imaging segmentation and could even be used with relatively small datasets [45].
A 2D U-Net [43] CNN architecture was also used by Dalmis et al. on 66 breast T1-MRI post-contrast
images [41], with promising results. At the same time, Moeskops et al. [42] used a deep learning
approach to segment the pectoral muscle in 34 T1-MRI breast images.

The next sections describe the software system developed in this work, composed of a segmentation
step followed by classification. Technical details on the database employed and on the code structure
are given in the Materials and Methods section, while the preliminary results are summed up and
commented in the Results and Discussion section.
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2. Materials and Methods

The dataset consists of 55 anonymized DCE–MRI scans of BC (11 DCIS + LCIS and 44 IDC).
The MRI sequence was dynamic eTHRIVE with fat suppression, on a Philips Achieva 1.5 T MRI
equipment. We considered images containing at least one tumor mass, as diagnosed by an expert
radiologist and confirmed by biopsy. An ROI of the tumor mass was manually delimited for each slice
by an expert radiologist in post-contrast images. The MRI volumes were resampled to isometric 1-mm
pixel size, before processing.

The software system developed consisted of two main steps (see Figure 1)—tumor
detection/segmentation (paragraphs 2.1 to 2.3) and tumor classification of in situ vs. invasive
tumor (2.4 and 2.5). The former found the tumor and performed contouring by (a) automatic
localization of candidate tumor ROIs (suspicious regions likely to contain a tumor mass) based
on a dynamically changed threshold on the intensity values (ROI hunting); (b) feature extraction
from candidate ROIs, through a pre-trained Deep-Learning Convolutional Neural Network (CNN);
(c) false-positive ROI rejection through the training of a feed-forward multi-layer perceptron
Artificial Neural Network (ANN), with the aim of preserving only the tumors (positive class)
for subsequent processing. The second step concerned the discrimination between in situ and
infiltrating tumors and was subdivided into—(d) Radiomics signature extraction from the detected
ROIs; and (e) binary classification. The code was written partially in python 3.7 and pyradiomics
(https://pyradiomics.readthedocs.io/en/latest/index.html), and partially in the Matlab environment.
In the following sections, each of the above-mentioned processing steps is reviewed in detail.
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Figure 1. A flowchart of the software. CONF1 and CONF2 denote the two configurations in which the
tumor classification (Step 2) was tested, i.e., respectively with manual ROIs as input, or fed up with the
automatically detected ROIs (coming from Step 1).

2.1. ROI Hunter Procedure

In our particular application, accurate tumor borders were not fundamental, so we used a simple
detection/segmentation method based on the application of thresholds followed by region classification.

Prior to be processed and in view to minimize false positive (FP) ROIs, the mammary area,
containing the breast, was semi-automatically selected in all slices by a bounding box (working volume)
and the tissue outside the box removed. Figure 2 shows an example of breast area selection.

Then the candidate tumors inside the working volume were detected. Since the tumor mass
normally appears as a bright area, an iterative 2D ROI Hunter procedure, based on a dynamically
changing threshold, was implemented. The number of ROIs detected from each slice was not set a
priori, rather it was related to the intensity properties of the image.

First, the images were converted to pixel values in the range 0 to 1, where the 99.9th percentile
of the gray values of the whole image was used for normalization, in order to exclude outliers.
The following iterative procedure was then performed on a per-slice basis, giving a small number of
2D ROIs, per image section. An initial threshold (T) was set to 0.9 and only pixels with value ≥T were
extracted, considering the found objects as tumor candidates. If no objects were detected, the threshold

https://pyradiomics.readthedocs.io/en/latest/index.html
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was iteratively lowered by 5% from the current value, until at least one object was identified in the
current slice. Tumor lesions were normally fairly round, thus, elongated and threadlike objects were
excluded by thresholding on their geometrical features. In particular, for each ROI, the length of the
major and minor axes of the ellipse that had the same second moments as the ROI were calculated
(as the eigenvalues of the covariance matrix of the ROI point coordinates), and their ratio R was derived.
In all examined cases, R was lower than about 1.5 or just slightly larger, so a conservative threshold
was set at R = 2, discarding ROIs with larger R, which were always artefacts.
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Each object gray-value median was calculated and the ROIs were labeled from 1 onwards in
gray-value median descending order (the highest median value possibly selecting the most plausible
tumor). Borders of the ROIs were also extracted.

2.2. Deep-Learning Feature Extraction

Many different approaches were experimented with the purpose of obtaining a set of features
able to distinguish tumor regions from FP, the most successful being the one described hereafter.
In the calculation of the features and subsequent classification (training and validation), we adopted
a sliding window approach. Initially, in order to set some procedure parameters, the variability of
tumor size was investigated, as the latter differed among different patients and of course in different
slices. According to the statistics of our dataset, the longest edge of the lesion-bounding box was at
most 120 mm. This was in accordance with previous studies, e.g., [21]. After some tests, we then chose
30 × 30 pixels as the size of the sliding window for ROI scanning. During operation, the bounding
box containing each lesion section was enlarged if necessary (when smaller than 30 × 30) and the
sliding window moved with a step of two pixels (on each axis) to explore the ROIs. The features
were calculated for each position of the sliding window. As to the choice of the feature vector to
employ, several tests were conducted, starting from the direct usage of the 900 patch pixel values,
which however gave poor results. Finally, features were extracted using a GoogleNet model pre-trained
on the ImageNet dataset [46], which is one the most representative networks in image classification.
GoogleNet consists of 2 convolution layers, 9 inception layers, and 1 fully connected layer, which was
used for feature calculation. The output size of the last fully connected layer was 1000, thus, the same
number of features were extracted for each sliding window position. To fit the input image size of
GoogleNet, all extracted patches were resized to 224 × 224 pixels using bilinear interpolation and
converted to RGB images through replication of the image bitplane. The cardinality of the feature
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set was then reduced through recursive feature elimination to only retain the most representative
variables. After various tests with different cardinality, we reduced the feature set to only 200 variables,
where the quality roughly saturated.

2.3. FP ROI Rejection through Binary Classification

In order to preserve only positive ROIs (true tumors) for further processing, so excluding FPs,
the obtained features were used to train a binary classifier.

Tumor patches whose area was occupied by the lesion at least by 10% were considered to be
positive, while the remaining ones, together with the supplementary patches randomly extracted from
outside the lesion-bounding box, contributed to the negative samples.

To increase the size of the dataset and to favor generalization, data augmentation was obtained by
random image rotations, taking care of finally obtaining a roughly balanced dataset. Several classifiers
were tested (e.g., XGBoost, svm . . . ) and the best results were obtained with a feed-forward, backprop,
multi-layer perceptron ANN, with one hidden layer composed of five neurons.

In order to clarify the terminology, hereafter, we will use the term “training set” for the “seen data”
(of which a larger part was used by the classifier for actual training and a small part was used for early
stop in case of overfitting), and the term “validation set” for the “unseen data” (for validating the model,
i.e., for accuracy/ROC/etc. calculation and hyperparameter tuning). Training/validation was performed
in a leave-one-patient-out (LOPO) cross-validation scheme [47]. Data was split by patient, ensuring that
the ROIs related to each patient were totally contained in the training or in the validation set, and never
in both, to avoid bias and consequent misleading figures of merit. For the same reason, at each iteration,
feature value normalization to range 0–1 was performed using min–max normalization on the training
set and, subsequently, validation set features were normalized by the parameters used for the training
set. Fifty-four out of 55 patients were used for training the network, while the last one was used for
validation, and a cyclical permutation of the patients was carried out. Statistics were calculated after a
full LOPO cycle—an ROC curve was used to judge classification quality and to deduce an optimal
threshold value on the ANN output, thus obtaining the binary classifier. Figure 3 shows an example of
output of the whole process from ROI Hunting to classification. As our detection/segmentation code
had a tendency to slightly underestimate the tumor area compared to the manually segmented ROIs,
we performed a dilation operation to be sure to cover the lesion tissue.
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2.4. Tumor Characterization by Radiomics Signature

The ROI Hunter locates lesions without giving further information. The second and last part of
the process concerns the characterization of the found ROIs, so that a decision-making system can
correctly discriminate in situ from infiltrative lesions. This step consists of Radiomics feature extraction
from the selected ROIs and classification. As the calculation was performed in 3D, before proceeding,
2D ROIs were grouped on the basis of continuity from slice to slice, so as to form 3D ROIs.

In order to discriminate the tumor volumes so obtained, we investigated a large dataset of
Radiomics features. Overall, 1820 features comprising shape, first order, and higher order features were
generated for each detected ROI, with original and filtered intensity. We computed 18 first-order statistic
features describing the distribution of voxel intensities within the image region defined, and 68 textural
features quantifying intra-tumor heterogeneity (22 from gray-level co-occurrence matrices (GLCM),
16 from gray-level run length matrices (GLRLM), 14 from gray level dependence matrices (GLDM),
and 16 from gray level size zone matrices (GLSZM)) [48]. In addition to calculating the features on
the original ROI volumes, we applied several preprocessing filters to each ROI, before computing the
Radiomics signatures—Laplacian of Gaussian filter for edge enhancement, Wavelet filters yielding
8 subfilters (all possible combinations of applying either a High or a Low pass filter in each of the
three dimensions), Square and SquareRoot filters that take the square and the square root of the image
intensities, and linearly scale them back to the original range, Logarithm, Exponential, Gradient filters,
the Local Binary Pattern filter (in a by-slice operation, i.e., 2D, and using spherical harmonics, in 3D).
After this step, we applied recursive feature elimination to remove redundant and irrelevant features.

2.5. Classification to Discriminate In Situ vs. Invasive BC

Three different classifiers (Naive Bayes, random forests, and XGBoost) were employed and the best
results were obtained with the Extreme Gradient Boosting (XGBoost) classifier (an implementation of
gradient boosted decision trees) [49] in a LOPO cross-validation scheme. At each iteration, the features
were normalized to [0, 1] using min–max normalization on the training subjects and subsequently
applying the calculated normalization parameters to each test patient feature set. To overcome the
severe class imbalance, we oversampled the minority class (in situ BC), using the Synthetic Minority
Oversampling Technique (SMOTE) [50]. Performance for our imbalanced classification task was
assessed using different metrics, such as balanced accuracy instead of accuracy, average precision-recall,
confusion matrix, Matthews correlation coefficient, and AUC from ROC curve. All hyperparameters of
the XGBoost classifier were optimized for our imbalanced dataset.

3. Results and Discussion

The sensitivity of the detection/segmentation procedure of our prototype, computed as the
percentage of tumor masses correctly detected, was 75% (n = 41 out of a total of 55 samples).
The Jaccard coefficient on the found masses was 0.7. As the system showed sub-optimal sensitivity,
an interactive part that allowed the manual inclusion of regions missed by the automatic procedure
was added for completeness. Four FPs were suggested by the ROI Hunter but excluded by the trained
ANN, which thus showed an excellent specificity. With regards to the code for the discrimination
between in situ and infiltrative lesions, two different configurations were explored (graphically
shown in Figure 1). In the first (CONF1), the discrimination step was tested on its own—all masses
visually detected and manually segmented by the radiologist (our ground truth) were used as
input. In this way, discrimination quality figures (e.g., accuracy) were not influenced by the errors
that the automatic detection/segmentation step introduced (in terms of false negatives, i.e., missed
masses). In the second configuration (CONF2), the discrimination code was fed with only the masses
found by the detection/segmentation code, giving a totally automatic standalone chain composed of
detection/segmentation + discrimination. In CONF1, the evaluation of the classification performance
of the trained XGBoost classifier reported a ROC curve with an AUC of 0.70. After choosing the



Appl. Sci. 2020, 10, 6109 8 of 11

classifier threshold associated with the ROC curve point closest to the [0, 1] ROC space coordinates
as the optimal threshold, the model correctly classified 47 subjects out of 55 (the confusion matrix
was (6, 5; 3, 41); sensitivity 0.93, specificity 0.54, with an F1 score of 0.90, a balanced accuracy score
of 0.74, a Matthews correlation coefficient of 0.44). In CONF2, where only the masses found by the
detection/segmentation step were considered (which, as said, led to missing a non-negligible number
of lesions), these values were slightly better, as most of classification errors actually came from masses
not detected by the first CAD step. This suggests that the lesions missed by the detection step were
also more difficult to characterize and assign to their class.

Our hypothesis was that the limit in our results might be justified, at least in part, by the small
size of our monocentric dataset and its imbalanced nature. This conjecture might be supported by
the observation that in our dataset there is a very small number of in situ tumors (i.e., 11, far less
numerous than the infiltrative lesions) and only about half of in situ were correctly classified, giving a
poor specificity value. This hypothesis might also be suggested by a check of the dataset size of the
three reviewed articles working in (conventional) MRI, i.e., [15,20,21], against the corresponding AUC
found by the respective authors. While our small database consisted of only 55 patients, the number of
images employed in the mentioned papers were, respectively, 248, 221 (if only the malignant cases
are considered), and 131. The AUC values were 0.90, 0.83, and 0.70, which evidently correlated with
sample cardinality. In particular, the last cited study of this group [21] had an AUC comparable to ours,
with a dataset that was more than double in size. These considerations encouraged us to go on with our
tests, increasing the dataset size in the near future. A deeper test of our approach would require a larger
sample size for each class, so as to guarantee generalization and result quality, avoiding overfitting.
In perspective, we point to increase the size of the dataset by involving different hospitals, thus creating
a multicenter study. In this way, after solving the well-known problem of image normalization between
different scanners, we might possibly build a CAD system with better quality and larger applicability.
Subsequently, to the few groups that are currently active on the specific subject of in situ vs. infiltrative
BC discrimination, we plan to propose a project on an ensemble classification system built by merging
(with various approaches) the classifiers developed by each group.

From the algorithmic point of view, it is our intention to soon explore the inclusion, in the calculation
of features, of the peritumoral area, which is known to be informative in certain Radiomics applications
(see e.g., [51], also working in DCE–MRI for BC).

4. Conclusions

The automatic pre-operative, non-invasive distinction between infiltrative and in situ breast
cancer represents an important challenge in the biomedical field.

In this work, a two-step CAD system was developed and tested on DCE–MRI scans, with the
aim of discriminating infiltrating from in situ breast tumors. The first step initially performed an ROI
Hunting procedure to automatically extract 2D ROIs exploiting intensity values. This level consisted of
a dynamical threshold algorithm that allowed us to select suspicious regions that were likely to contain
a tumor mass. From the candidate ROIs, 1000 features were extracted through a deep learning method
(starting from a pre-trained GoogleNet), followed by a classical machine-learning classifier (ANN) in
the task of excluding FP regions. The second step performed the classification of in situ vs. invasive
breast cancer of the previously detected ROIs (merged into 3D regions), through a Radiomics-based
analysis. The results showed that the ROI Hunter segmentation procedure correctly identified 75%
of tumor volumes, but the software contained an interactive part that allowed manual inclusion of
the regions missed by the automatic detection/segmentation procedure. The infiltrative vs. in situ
classification task achieved a final F1 score of 0.90 on all masses and a slightly better score on the
masses automatically identified by the detection/segmentation step.

Our preliminary results on tumor type classification were still worse than those reported in the
few specific studies existing in the literature, which could be partly explained by the small size of the
dataset we used, which was moreover quite imbalanced.
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Our future efforts would be towards the enrichment of the database employed, considering a
multicentric development of the research. From the algorithmic point of view, we shall pursue an
increase in sensitivity in the detection/segmentation step, with alternative approaches, and an increment
of the accuracy of the classification step. In particular, the latter would also explore the effectiveness of
including the peritumoral area in the ROIs. The aim would be the complete automatization of our
CAD system in detecting the tumors and then distinguishing the two classes, so that in perspective
this could be used as a valuable support to radiologists for detection and characterization of breast
cancers in DCE–MRI images. As a long-term project, we plan to later propose the building of an
ensemble classification system merging the classifiers developed by the few groups currently active on
the specific subject of in situ vs. infiltrative BC discrimination.
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