9 research outputs found

    First transcriptome assembly of a newly discovered vent mussel, Gigantidas vrijenhoeki, at Onnuri Vent Field on the northern Central Indian Ridge

    Get PDF
    This is the first report of a transcriptome assembly of a newly discovered hydrothermal vent mussel, Gigantidas vrijenhoeki (Bivalvia: Mytilidae), on the Central Indian Ridge. Gigantidas vrijenhoeki was identified from material collected at the newly discovered Onnuri Vent Field (OVF) on the Central Indian Ridge in 2018, and was reported as a new species, distinct from another dominant hydrothermal vent mussel, Bathymodiolus marisindicus, in 2020. We sequenced the transcriptome of G. vrijenhoeki using the Illumina HiSeq X System. De novo assembly and analysis of the coding regions predicted 25,405 genes, 84.76% of which was annotated by public databases. The transcriptome of G. vrijenhoeki will be a valuable resource in studying the ecological and biological characteristics of this new species, which is distinct from other deep-sea mussels. These data should also support the investigation of the relationship between the environmental conditions of hydrothermal vents and the unique distribution of G. vrijenhoeki in the OVF of the Central Indian Ridge

    The Draft Genome of an Octocoral, Dendronephthya gigantea

    Get PDF
    Coral reefs composed of stony corals are threatened by global marine environmental changes. However, soft coral communities of octocorallian species, appear more resilient. The genomes of several cnidarians species have been published, including from stony corals, sea anemones, and hydra. To fill the phylogenetic gap for octocoral species of cnidarians, we sequenced the octocoral, Dendronephthya gigantea, a nonsymbiotic soft coral, commonly known as the carnation coral. The D. gigantea genome size is similar to 276 Mb. A high-quality genome assembly was constructed from PacBio long reads (29.85 Gb with 108x coverage) and Illumina short paired-end reads (35.54 Gb with 128x coverage) resulting in the highest N50 value (1.4 Mb) reported thus far among cnidarian genomes. About 12% of the genome is repetitive elements and contained 28,879 predicted protein-coding genes. This gene set is composed of 94% complete BUSCO ortholog benchmark genes, which is the second highest value among the cnidarians, indicating high quality. Based on molecular phylogenetic analysis, octocoral and hexacoral divergence times were estimated at 544 MYA. There is a clear difference in Hox gene composition between these species: unlike hexacorals, the Antp superclass Evx gene was absent in D. gigantea. Here, we present the first genome assembly of a nonsymbiotic octocoral, D. gigantea to aid in the comparative genomic analysis of cnidarians, including stony and soft corals, both symbiotic and nonsymbiotic. The D. gigantea genome may also provide clues to mechanisms of differential coping between the soft and stony corals in response to scenarios of global warming

    Perspectives for biocatalytic lignin utilization: cleaving 4-O-5 and C??-C?? bonds in dimeric lignin model compounds catalyzed by a promiscuous activity of tyrosinase

    Get PDF
    Background: In the biorefinery utilizing lignocellulosic biomasses, lignin decomposition to value-added phenolic derivatives is a key issue, and recently biocatalytic delignification is emerging owing to its superior selectivity, low energy consumption, and unparalleled sustainability. However, besides heme-containing peroxidases and laccases, information about lignolytic biocatalysts is still limited till date. Results: Herein, we report a promiscuous activity of tyrosinase which is closely associated with delignification requiring high redox potentials (>1.4 V vs. normal hydrogen electrode [NHE]). The promiscuous activity of tyrosinase not only oxidizes veratryl alcohol, a commonly used nonphenolic substrate for assaying ligninolytic activity, to veratraldehyde but also cleaves the 4-O-5 and C??-C?? bonds in 4-phenoxyphenol and guaiacyl glycerol-??-guaiacyl ether (GGE) that are dimeric lignin model compounds. Cyclic voltammograms additionally verified that the promiscuous activity oxidizes lignin-related high redox potential substrates. Conclusion These results might be applicable for extending the versatility of tyrosinase toward biocatalytic delignification as well as suggesting a new perspective for sustainable lignin utilization. Furthermore, the results provide insight for exploring the previously unknown promiscuous activities of biocatalysts much more diverse than ever thought before, thereby innovatively expanding the applicable area of biocatalysis

    Exploration of Zero-Valent Iron Stabilized Calcium–Silicate–Alginate Beads’ Catalytic Activity and Stability for Perchlorate Degradation

    No full text
    Perchlorate contamination in groundwater poses a serious threat to human health, owing to its interference with thyroid function. The high solubility and poor adsorption of perchlorate ions make perchlorate degradation a necessary technology in groundwater contaminant removal. Here, we demonstrate the perchlorate degradation by employing nano zero-valent iron (nZVI) embedded in biocompatible silica alginate hybrid beads fabricated using calcium chloride (1 wt%) as a crosslinker. The concentration of precursors (sodium alginate, sodium silicate) for bead formation was standardized by evaluating the thermal stability of beads prepared at different sodium silicate and alginate concentrations. Thermal degradation of silica alginate hybrid samples showed a stepwise weight loss during the thermal sweep, indicating different types of reactions that occur during the degradation process. The formation of the silica alginate hybrid structure was confirmed by FT-IR spectroscopy. Scanning electron microscopy (SEM) data revealed the surface morphology of silica alginate hybrid changes by varying sodium silicate and alginate concentrations. nZVI-loaded alginate–silicate polymer bead (nZVI-ASB) exhibited excellent perchlorate degradation efficiency by degrading 20 ppm of perchlorate within 4 h. Our study also showed the perchlorate degradation efficiency of nZVI-ASB is maximum at neutral pH conditions

    Cissus subtetragona Planch. Ameliorates Inflammatory Responses in LPS-induced Macrophages, HCl/EtOH-induced Gastritis, and LPS-induced Lung Injury via Attenuation of Src and TAK1

    No full text
    Several Cissus species have been used and reported to possess medicinal benefits. However, the anti-inflammatory mechanisms of Cissus subtetragona have not been described. In this study, we examined the potential anti-inflammatory effects of C. subtetragona ethanol extract (Cs-EE) in vitro and in vivo, and investigated its molecular mechanism as well as its flavonoid content. Lipopolysaccharide (LPS)-induced macrophage-like RAW264.7 cells and primary macrophages as well as LPS-induced acute lung injury (ALI) and HCl/EtOH-induced acute gastritis mouse models were utilized. Luciferase assays, immunoblotting analyses, overexpression strategies, and cellular thermal shift assay (CETSA) were performed to identify the molecular mechanisms and targets of Cs-EE. Cs-EE concentration-dependently reduced the secretion of NO and PGE2, inhibited the expression of inflammation-related cytokines in LPS-induced RAW264.7 cells, and decreased NF-κB- and AP-1-luciferase activity. Subsequently, we determined that Cs-EE decreased the phosphorylation events of NF-κB and AP-1 pathways. Cs-EE treatment also significantly ameliorated the inflammatory symptoms of HCl/EtOH-induced acute gastritis and LPS-induced ALI mouse models. Overexpression of HA-Src and HA-TAK1 along with CETSA experiments validated that inhibited inflammatory responses are the outcome of attenuation of Src and TAK1 activation. Taken together, these findings suggest that Cs-EE could be utilized as an anti-inflammatory remedy especially targeting against gastritis and acute lung injury by attenuating the activities of Src and TAK1
    corecore