9 research outputs found

    The frequency of mutations in exon 11 of the CF gene in polish cystic fibrosis patients

    No full text

    TheARX mutations: A frequent cause of X-linked mental retardation

    No full text
    International audienceThe ARX gene mutations have been demonstrated to cause different forms of mental retardation (MR). Beside FMR1, in families with X-linked mental retardation (XLMR), the ARX dysfunction was demonstrated to be among the most frequent causes of this heterogeneous group of disorders. Nevertheless, in sporadic cases of MR, ARX mutations are extremely rare. In order to evaluate the frequency of ARX mutation in XLMR, we performed mutational analysis of ARX in 165 mentally retarded probands negative for FRAXA and belonging to families in which the condition segregates as an X-linked condition. The same recurrent mutation, an in frame 24 bp insertion (c.428-451 dup (24 bp)), was identified in five patients. In one family, the mother of two affected boys was found not to carry the mutation detected in her sons. These data suggest the presence of germline mosaicism for the mutation in the mother. Our results confirm the significant contribution of ARX mutations in the etiology of MR, especially in this group of patients selected for XLMR (3%). These data, together with those reported in the literature, imply that screening for c.428-451 dup (24 bp) mutation should be recommended in all patients with suspected XLMR

    Novel mutation of IL1RAPL1 gene in a nonspecific X-linked mental retardation (MRX) family

    No full text
    International audienceMental retardation (MR) affects approximately 2% of the population. About 10% of all MR cases result from defects of X-linked genes. Mutations in most of more than 20 known genes causing nonspecific form of X-linked MR (MRX) are very rare and may account for less than 0.5-1% of MR. Linkage studies in extended pedigrees followed by mutational analysis of known MRX genes in the linked interval are often the only way to identify a genetic cause of the disorder. We performed linkage analysis in several MRX families, and in one family with four males with MR we mapped the disease to an interval encompassing Xp21.2-22.11 (with a maximum LOD score of 2.71). Subsequent mutation analysis of genes located in this interval allowed us to identify a partial deletion of the IL1RAPL1 gene. Different nonoverlapping deletions involving IL1RAPL1 have been reported previously, suggesting that this region could be deletion-prone. In this report, we present the results of the molecular analyses and clinical examinations of four affected family members with the deletion in IL1RAPL1. Our data further confirm the importance and usefulness of linkage studies for gene mapping in MRX families and demonstrate that IL1RAPL1 plays an important role in the etiology of MRX. With the development of new methods (aCGH, MLPA), further rearrangements in this gene (including deletions and duplications) might be discovered in the nearest future

    Towards a Better Molecular Diagnosis of FMR1-Related Disorders—A Multiyear Experience from a Reference Lab

    No full text
    The article summarizes over 20 years of experience of a reference lab in fragile X mental retardation 1 gene (FMR1) molecular analysis in the molecular diagnosis of fragile X spectrum disorders. This includes fragile X syndrome (FXS), fragile X-associated primary ovarian insufficiency (FXPOI) and fragile X-associated tremor/ataxia syndrome (FXTAS), which are three different clinical conditions with the same molecular background. They are all associated with an expansion of CGG repeats in the 5′UTR of FMR1 gene. Until 2016, the FMR1 gene was tested in 9185 individuals with the pre-screening PCR, supplemented with Southern blot analysis and/or Triplet Repeat Primed PCR based method. This approach allowed us to confirm the diagnosis of FXS, FXPOI FXTAS in 636/9131 (6.96%), 4/43 (9.3%) and 3/11 (27.3%) of the studied cases, respectively. Moreover, the FXS carrier status was established in 389 individuals. The technical aspect of the molecular analysis is very important in diagnosis of FXS-related disorders. The new methods were subsequently implemented in our laboratory. This allowed the significance of the Southern blot technique to be decreased until its complete withdrawal. Our experience points out the necessity of implementation of the GeneScan based methods to simplify the testing procedure as well as to obtain more information for the patient, especially if TP-PCR based methods are used
    corecore