114 research outputs found

    Volcanism by melt-driven Rayleigh-Taylor instabilities and possible consequences of melting for admittance ratios on Venus

    Get PDF
    A large number of volcanic features exist on Venus, ranging from tens of thousands of small domes to large shields and coronae. It is difficult to reconcile all these with an explanation involving deep mantle plumes, since a number of separate arguments lead to the conclusion that deep mantle plumes reaching the base of the lithosphere must exceed a certain size. In addition, the fraction of basal heating in Venus' mantle may be significantly lower than in Earth's mantle reducing the number of strong plumes from the core-mantle boundary. In three-dimensional convection simulations with mainly internal heating, weak, distributed upwellings are usually observed. We present an alternative mechanism for such volcanism, originally proposed for the Earth and for Venus, involving Rayleigh-Taylor instabilities driven by melt buoyancy, occurring spontaneously in partially or incipiently molten regions

    The importance of temporal stress variation and dynamic disequilibrium for the initiation of plate tectonics

    Get PDF
    We use 1-D thermal history models and 3-D numerical experiments to study the impact of dynamic thermal disequilibrium and large temporal variations of normal and shear stresses on the initiation of plate tectonics. Previous models that explored plate tectonics initiation from a steady state, single plate mode of convection concluded that normal stresses govern the initiation of plate tectonics, which based on our 1-D model leads to plate yielding being more likely with increasing interior heat and planet mass for a depth-dependent Byerlee yield stress. Using 3-D spherical shell mantle convection models in an episodic regime allows us to explore larger temporal stress variations than can be addressed by considering plate failure from a steady state stagnant lid configuration. The episodic models show that an increase in convective mantle shear stress at the lithospheric base initiates plate failure, which leads with our 1-D model to plate yielding being less likely with increasing interior heat and planet mass. In this out-of-equilibrium and strongly time-dependent stress scenario, the onset of lithospheric overturn events cannot be explained by boundary layer thickening and normal stresses alone. Our results indicate that in order to understand the initiation of plate tectonics, one should consider the temporal variation of stresses and dynamic disequilibrium

    The subduction dichotomy of strong plates and weak slabs

    Get PDF
    A key element of plate tectonics on Earth is that the lithosphere is subducting into the mantle. Subduction results from forces that bend and pull the lithosphere into the interior of the Earth. Once subducted, lithospheric slabs are further modified by dynamic forces in the mantle, and their sinking is inhibited by the increase in viscosity of the lower mantle. These forces are resisted by the material strength of the lithosphere. Using geodynamic models, we investigate several subduction models, wherein we control material strength by setting a maximum viscosity for the surface plates and the subducted slabs independently. We find that models characterized by a dichotomy of lithosphere strengths produce a spectrum of results that are comparable to interpretations of observations of subduction on Earth. These models have strong lithospheric plates at the surface, which promotes Earth-like single-sided subduction. At the same time, these models have weakened lithospheric subducted slabs which can more easily bend to either lie flat or fold into a slab pile atop the lower mantle, reproducing the spectrum of slab morphologies that have been interpreted from images of seismic tomography

    Super-Earths: A New Class of Planetary Bodies

    Full text link
    Super-Earths, a class of planetary bodies with masses ranging from a few Earth-masses to slightly smaller than Uranus, have recently found a special place in the exoplanetary science. Being slightly larger than a typical terrestrial planet, super-Earths may have physical and dynamical characteristics similar to those of Earth whereas unlike terrestrial planets, they are relatively easier to detect. Because of their sizes, super-Earths can maintain moderate atmospheres and possibly dynamic interiors with plate tectonics. They also seem to be more common around low-mass stars where the habitable zone is in closer distances. This article presents a review of the current state of research on super-Earths, and discusses the models of the formation, dynamical evolution, and possible habitability of these objects. Given the recent advances in detection techniques, the detectability of super-Earths is also discussed, and a review of the prospects of their detection in the habitable zones of low-mass stars is presented.Comment: A (non-technical) review of the literature on the current state ofresearch on super-Earths. The topics include observation, formation, dynamical evolution, habitability, composition, interior dynamics, magnetic field, atmosphere, and propsect of detection. The article has 44 pages, 27 figures, and 203 references. It has been accepted for publication in the journal Contemporary Physics (2011

    Ariel planetary interiors White Paper

    Get PDF
    The recently adopted Ariel ESA mission will measure the atmospheric composition of a large number of exoplanets. This information will then be used to better constrain planetary bulk compositions. While the connection between the composition of a planetary atmosphere and the bulk interior is still being investigated, the combination of the atmospheric composition with the measured mass and radius of exoplanets will push the field of exoplanet characterisation to the next level, and provide new insights of the nature of planets in our galaxy. In this white paper, we outline the ongoing activities of the interior working group of the Ariel mission, and list the desirable theoretical developments as well as the challenges in linking planetary atmospheres, bulk composition and interior structure

    A comparison of numerical surface topography calculations in geodynamic modelling: an evaluation of the ‘sticky air' method

    Get PDF
    Calculating surface topography in geodynamic models is a common numerical problem. Besides other approaches, the so-called ‘sticky air' approach has gained interest as a free-surface proxy at the top boundary. The often used free slip condition is thereby vertically extended by introducing a low density, low viscosity fluid layer. This allows the air/crust interface to behave in a similar manner to a true free surface. We present here a theoretical analysis that provides the physical conditions under which the sticky air approach is a valid approximation of a true free surface. Two cases are evaluated that characterize the evolution of topography on different timescales: (1) isostatic relaxation of a cosine perturbation and (2) topography changes above a rising plume. We quantitatively compare topographies calculated by six different numerical codes (using finite difference and finite element techniques) using three different topography calculation methods: (i) direct calculation of topography from normal stress, (ii) body-fitting methods allowing for meshing the topography and (iii) Lagrangian tracking of the topography on an Eulerian grid. It is found that the sticky air approach works well as long as the term (ηst/ηch)/(hst/L)3 is sufficiently small, where ηst and hst are the viscosity and thickness of the sticky air layer, and ηch and L are the characteristic viscosity and length scale of the model, respectively. Spurious lateral fluctuations of topography, as observed in some marker-based sticky air approaches, may effectively be damped by an anisotropic distribution of markers with a higher number of markers per element in the vertical than in the horizontal directio

    Convection in colloidal suspensions with particle-concentration-dependent viscosity

    Full text link
    The onset of thermal convection in a horizontal layer of a colloidal suspension is investigated in terms of a continuum model for binary-fluid mixtures where the viscosity depends on the local concentration of colloidal particles. With an increasing difference between the viscosity at the warmer and the colder boundary the threshold of convection is reduced in the range of positive values of the separation ratio psi with the onset of stationary convection as well as in the range of negative values of psi with an oscillatory Hopf bifurcation. Additionally the convection rolls are shifted downwards with respect to the center of the horizontal layer for stationary convection (psi>0) and upwards for the Hopf bifurcation (psi<0).Comment: 8 pages, 6 figures, submitted to European Physical Journal

    Subduction controls the distribution and fragmentation of Earth’s tectonic plates

    Get PDF
    International audienceThe theory of plate tectonics describes how the surface of the Earth is split into an organized jigsaw of seven large plates 1 of similar sizes and a population of smaller plates, whose areas follow a fractal distribution 2,3. The reconstruction of global tectonics during the past 200 My 4 suggests that this layout is probably a long-term feature of our planet, but the forces governing it are unknown. Previous studies 3,5,6 , primarily based on statistical properties of plate distributions, were unable to resolve how the size of plates is determined by lithosphere properties and/or underlying mantle convection. Here, we demonstrate that the plate layout of the Earth is produced by a dynamic feedback between mantle convection and the strength of the lithosphere. Using 3D spherical models of mantle convection with plate-like behaviour that match the plate size-frequency distribution observed for Earth, we show that subduction geometry drives the tectonic fragmentation that generates plates. The spacing between slabs controls the layout of large plates, and the stresses caused by the bending of trenches, break plates into smaller fragments. Our results explain why the fast evolution in small back-arc plates 7,8 reflects the dramatic changes in plate motions during times of major reorganizations. Our study opens the way to use convection simulations with plate-like behaviour to unravel how global tectonics and mantle convection are dynamically connected
    corecore