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S U M M A R Y
Calculating surface topography in geodynamic models is a common numerical problem. Be-
sides other approaches, the so-called ‘sticky air’ approach has gained interest as a free-surface
proxy at the top boundary. The often used free slip condition is thereby vertically extended by
introducing a low density, low viscosity fluid layer. This allows the air/crust interface to behave
in a similar manner to a true free surface. We present here a theoretical analysis that provides
the physical conditions under which the sticky air approach is a valid approximation of a true
free surface. Two cases are evaluated that characterize the evolution of topography on different
timescales: (1) isostatic relaxation of a cosine perturbation and (2) topography changes above
a rising plume. We quantitatively compare topographies calculated by six different numerical
codes (using finite difference and finite element techniques) using three different topography
calculation methods: (i) direct calculation of topography from normal stress, (ii) body-fitting
methods allowing for meshing the topography and (iii) Lagrangian tracking of the topography
on an Eulerian grid. It is found that the sticky air approach works well as long as the term
(ηst/ηch)/(hst/L)3 is sufficiently small, where ηst and hst are the viscosity and thickness of the
sticky air layer, and ηch and L are the characteristic viscosity and length scale of the model,
respectively. Spurious lateral fluctuations of topography, as observed in some marker-based
sticky air approaches, may effectively be damped by an anisotropic distribution of markers
with a higher number of markers per element in the vertical than in the horizontal direction.

Key words: Numerical solutions; Numerical approximations and analysis; Geomechanics;
Tectonics and landscape evolution; Dynamics of lithosphere and mantle.

1 I N T RO D U C T I O N

Topography is a direct observable of the interaction between the
Earth’s internal and external dynamics. The study of the processes
affecting topography is, therefore, a very active research field and
many studies have highlighted the importance of the feedback be-
tween surface processes and lithosphere dynamics (Koons 1989;
Willett 1999; Schmeling et al. 2008; Braun & Yamato 2010). Cou-
pling of regional geodynamic models with landscape evolution
models is often used to study the behaviour of such a complex
system (Braun 2006). Therefore, it is important for numerical mod-
els of Earth deformation to produce realistic topography.

Most mantle convection simulations until now treat the surface as
a free-slip boundary. The Earth’s surface, however, is a free surface,
which implies that both normal and shear stress should vanish at

this interface. Moreover, it has been shown that treating the Earth’s
surface as a free surface can have a significant effect on lithospheric
and mantle dynamics (Zhong et al. 1996; Kaus et al. 2008, 2010).

In the following paragraphs, we will give a short overview of
the methods used to describe the surface evolution in geodynamic
models. Topographic calculations in geodynamic modelling involve
either direct calculation of topography from (1) normal stress, (2)
body-fitting methods allowing for meshing the topography or (3)
Lagrangian tracking of the topography on an Eulerian grid. In the
mantle convection community, the deformation of the Earth’s sur-
face has traditionally been studied using the normal stress method:
Model setups usually involve a free-slip upper boundary condi-
tion and the topography is calculated as the compensation altitude
that balances the normal stress acting at the top of the domain
(McKenzie 1977; Blankenbach et al. 1989; Zhong & Gurnis
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1992; Zhong et al. 1993). Topography behaves dynamically and
evolves proportionally with stresses resulting from mantle dynam-
ics (Hager et al. 1985). Further improvements were made to take
the history-dependent feedback of topography on the interior dy-
namics into account (Gurnis et al. 1996; Zhong et al. 1996). This
methodology involves the contribution of the normal topographic
stresses on the upper Eulerian nodes into the next velocity field
evaluation.

The second approach known as body-fitting methods provides
a direct treatment of a free surface. This method enables the nu-
merical grid to follow the topography; a zero normal stress condi-
tion can then naturally be applied on this surface. Such configura-
tion can be achieved by either using a deforming Lagrangian grid
(Melosh & Raefsky 1980; Poliakov & Podladchikov 1992; Hassani
& Chéry 1996; Lavier et al. 2000; Crook et al. 2006, and references
therein) or by using an Arbitrary Lagrangian-Eulerian (ALE) for-
mulation that allows the Eulerian computation grid to adjust to the
surface throughout deformation (Fullsack 1995). The main inconve-
nience of the Lagrangian approach remains the necessity of remesh-
ing (regridding) in large deformation experiments (Poliakov &
Podladchikov 1992; Fullsack 1995; Kaus et al. 2008; Quinteros
et al. 2009). ALE methods can achieve large deformations without
grid distortion and do not need regridding (e.g. Beaumont et al.
1994; Pysklywec et al. 2000; Quinquis et al. 2011).

Other kind of methods employ an Eulerian grid for the flow prob-
lem discretization and an independent discretization for represent-
ing the free surface. For this purpose, the Marker-and-Cell method
(Harlow & Welsh 1965), level-set functions (Mühlhaus et al. 2007;
Braun et al. 2008) or hybrid methods (Samuel & Evonuk 2010) are
commonly used in geodynamics. Free-surface tracking techniques
allow for the identification of the cells in the flow grid that contain
the interface. This allows a free-surface boundary condition to be
applied to the interface cells within the Eulerian grid (Harlow &
Welsh 1965; Braun et al. 2008).

Another free-surface approximation, the so-called ‘sticky air’ ap-
proach, has recently gained interest in the geodynamics community.
This method requires the addition of a fluid layer in the model do-
main. The latter is used as a proxy for air (or water) and, thereby,
requires a low density and a sufficiently small viscosity. Subse-
quently, the interface between the markers defining the crust and
the air behaves similarly to a free surface (Zaleski & Julien 1992;
Gerya & Yuen 2003a; Schmeling et al. 2008; Quinquis et al. 2011).
Since the model domain contains the surface of interest, this ap-
proach does not necessitate the application of a zero normal stress
boundary condition. Sufficiently small normal stress at the surface
is ensured by the physical properties of the air layer (density, vis-
cosity), which, therefore, allows for the development of a realistic
topography. In such methods, the location of the free surface on the
flow grid is approximated proportionally with the spatial resolution
of the markers. This is in contrast to body-fitting finite elements
in which the boundary conditions can be exactly applied to the
interface.

The sticky air method enables an easy implementation of a free
surface in finite-difference (FD) or Eulerian finite-element (FE)
codes. In this paper, we will focus on the practical use of the sticky
air approach: A theoretical analysis will be presented that provides
the physical conditions under which the sticky air approach is a
valid approximation of a free surface. We will discuss two cases that
characterize the evolution of topography on different timescales and
will compare the topography obtained with six different numerical
codes using all three described topography calculation methods
among each other and against the theoretical prediction.

The further structure of the paper is the following. In Section 2,
we describe the theoretical considerations on the validity of the
sticky air approach, the governing equations and the model setups.
Section 3 gives an overview of the numerical codes employed in
this study, whereas Section 4 describes the results obtained. Finally,
Section 5 features a discussion of the results and provides guidelines
on how to use the sticky air approach properly.

2 T H E O R E T I C A L B A C KG RO U N D

2.1 Analytical considerations

To simulate a free surface with a sticky air approach, the layer has to
fulfil certain conditions, because any flow within it is associated with
flow stresses. The free-surface conditions can be derived subject to
the requirement that the sticky air layer allows vertical movements
of the physical surface without exerting stresses on it. Any vertical
deflection of the surface has to be able to relax isostatically without
‘feeling’ the presence of the sticky air layer.

A narrow deflection with amplitude htop,0 of wavelength λ at the
top border of a box of width L causes a characteristic stress

σch = ρghtop,0, (1)

where ρ is the density of the layer beneath the surface and g is
the gravitational acceleration. Assuming a thin sticky air layer (hst

� L) mass conservation of sticky air may be written in terms of a
vertically averaged horizontal velocity v̄x within the sticky air layer,

∂v̄x

∂x
= −vtop

hst
, (2)

where x is the horizontal coordinate and vtop is the vertical char-
acteristic velocity of the crustal layer-sticky air boundary resulting
from the geodynamic process under consideration. Identifying v̄x

with the sticky air velocity vst and integration gives,

vst = −
∫

x

vtop

hst
dx . (3)

As the sticky air layer is thin (having a free slip top), flow within it
can be approximated with a channel flow of thickness 2hst (having
zero shear stress at the centre) resulting in,

vst = − h2
st

3ηst

dP

dx
, (4)

where ηst is the sticky air viscosity and P is the pressure within the
sticky air layer (Turcotte & Schubert 2002). Integration of eq. (4)
using eq. (3) gives a characteristic pressure difference between x =
0 and x = λ/4;

�Pch = 3ηst

h3
st

∫ x=λ/4

x=0

∫
x
vtop dx ′dx . (5)

As the normal deviatoric stress inside the sticky air layer is zero
at the no-slip boundary, �Pch is the only normal stress component
acting on the surface of the medium. Defining the parameter Cmax

by

�Pch = Cmaxσch, (6)

we arrive at

Cmax = 3ηst

h3
stρghtop,0

∫ x=λ/4

x=0

∫
x
vtop dx ′dx . (7)

The general condition for a traction free surface can thus be
defined by

Cmax � 1. (8)
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This condition can easily be applied to a specific model with regards
to the timescale of its characteristic geological processes (see Sec-
tion 5.6). Here, we discuss two cases considering short timescale
(isostatic relaxation) and long timescale (rise of a plume) processes.

2.1.1 Isostatic timescale

A deflection with amplitude htop,0 of wavelength λ described by,

htop = htop,0 cos

(
2πx

λ

)
, (9)

causes a characteristic stress described in eq. (1). The isostatic
relaxation time of an infinite half-space of such a deflection is given
by

trlx = 4πηch

ρgλ
, (10)

where ηch is the viscosity controlling the relaxation (Turcotte &
Schubert 2002) and here given by the mantle viscosity ηM . Com-
bining eqs (1), (9) and (10) and dividing distance by time we obtain
the vertical relaxation velocity

vtop = −htop

trlx
= −σchλ

4πηch
cos

(
2πx

λ

)
. (11)

Combining with eq. (7), using the characteristic pressure difference
between x = 0 and x = λ/4 and accounting for the characteristic
wavelength in the model, which is here given by λ = L, where L is
the box width, we arrive at

Cisost = 3

16π 3

(
L

hst

)3
ηst

ηch
, (12)

with the condition for a traction free surface on isostatic timescales
defined by

Cisost � 1. (13)

2.1.2 Stokes timescale

A less restrictive condition may be formulated based on negligible
dynamic sticky air pressure associated with topography variation
on geologic timescales characterized by gravity driven movements
of geological units of length scale l and density contrast �ρ (e.g.
diapirs, slabs). To derive this condition the isostatic relaxation time
(eq. 10) is replaced by the Stokes timescale

tStokes = hmodel

vStokes
= hmodelηch

Al2g�ρ
, (14)

where vStokes is the Stokes velocity of the active geodynamic body,
hmodel is the height of the model and A is a geometric constant (1/3
for a weak Stokes sphere; Turcotte & Schubert 2002). Replacing the
length scale l by clhmodel, choosing cl = 0.5 as an upper bound and
taking the characteristic stress associated with the actively moving
body as 2l�ρg the vertical velocity of the topography is of the order

vtop = σch Ahmodel�ρ

4ρηch
. (15)

Integrating eq. (2) and using eq. (4) gives

λvtop

4hst
= h2

st

3ηst

dP

dx
≈ h2

st

3ηst

�P

λ/4
. (16)

Defining CStokes similarly as in eq. (6)

�Pch = CStokes · σch (17)

and choosing for simplicity λ = 2hmodel, we arrive at

CStokes = 1

16

�ρ

ρ

(
hmodel

hst

)3
ηst

ηch
. (18)

The condition for a traction free surface in the isostatic limit (on
timescales larger than trlx) can thus be defined by

CStokes � 1. (19)

2.2 Physical model

The case study is defined as a purely viscous fluid dynamic problem.
Elastic effects, which might become important in the presence of
a high viscosity lithosphere are not considered in this study for
two reasons. (a) The stress relaxation time of the model described
in the next paragraph is either on the order of, or smaller than
the observation time (De ≤ 1, where De is the Deborah number)
and (b) only few participating codes have implemented elasticity.
Nevertheless, elastic effects should be kept in mind for different
geodynamical applications (Zhong 2002; Kaus & Becker 2007).
We assume an incompressible fluid, in which the driving density
fields are advected with the flow. The problem can, therefore, be
described by the equations of conservation of mass

∂vi

∂xi
= 0, (20)

the equation of momentum

− ∂ P

∂xi
+ ∂

∂x j

[
ηk

(
∂vi

∂x j
+ ∂v j

∂xi

)]
− ρk gẑi = 0 (21)

and the advection equation

∂ck

∂t
+ vi

∂ck

∂xi
= 0, (22)

where �v is the velocity, P the pressure, ηk the viscosity of composi-
tion k, �̂z the unit vector in vertical upward direction, ρk the density
of composition k and ck the concentration of composition k (either
0 or 1). The viscosity and the density depend on ck and are, thus,
also advected with the flow.

2.3 Model setups

The 2-D model setups for cases 1 and 2 are shown in Figs 1(a)
and (b), respectively. In both cases, the model box spans 2800 km
by 700–1100 km (greater model height is necessary in codes em-
ploying sticky air on top). For both cases, the initial condition is
specified by a mantle of 600 km thickness, overlain by a cosine
shaped, 93–107- km-thick lithosphere in Case 1, whereas it is 100-
km-thick lithosphere in Case 2. The sticky air layer has a thickness
varying between 10 and 400 km. The lithosphere is a highly viscous,
dense medium (ρL = 3300 kg m−3, ηL = 1023 Pa s). The underlying
ambient mantle has a density of ρM = 3300 kg m−3 and a viscosity
of ηM = 1021 Pa s. For Case 2, we employ a plume with a radius of
rP = 50 km, a density of ρP = 3200 kg m−3 and a viscosity of ηP =
1020 Pa s. The plume centre is initially located 1400 km away from
the side boundaries and 300 km above the bottom in the middle of
the mantle layer. The sticky air layer on the top has a density of ρst =
0 kg m−3 and a viscosity of ηst = 1018–1020 Pa s and is bordered by a
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Figure 1. Model setup and initial condition for both 2-D cases employed in the study, where (a) Case 1 is featuring a cosine perturbation of the surface and
(b) Case 2 includes a rising plume beneath the lithosphere.

free-slip top boundary condition. The mechanical boundary condi-
tions at the sides are symmetric for Case 1. Periodic boundaries and
a sinusoidal shaped topography could instead be used here for an
equivalent result. Symmetric (reflective, free slip) side boundaries
are used for Case 2. For both cases the bottom boundary is set to no
slip condition. The setup for the real free-surface model is identical
to the setup described earlier, except that the weak surface layer is
removed, and the surface boundary condition used is zero normal
stress.

2.4 Analytical solution for Case 1

The analytical solution for Case 1 assumes a three-layer model
(Ramberg 1967). The upper layer has an infinite overburden and a
no-slip bottom and is here associated with the sticky air layer of
finite height. The middle layer is the lithosphere and a sublitho-
spheric mantle gives the lower layer (see Fig. 1 for the dimensions,
viscosities and boundary conditions). The maximum topography in
Case 1 at time t can be derived analytically using the relaxation rate
γ and from the initial maximum topography hinit

hanalytic = hinit exp [γ t] , (23)

where t = 14.825 ka is the characteristic relaxation time and γ =
−0.2139 × 10−11 s−1 is the characteristic relaxation rate of the three-
layer case at a given wavelength of 2800 km. It should be noted
that these values are valid for infinitesimal amplitudes, whereas
deviations are to be expected for small but finite amplitudes. In

particular, keeping the interface between the middle and lower layer
flat and assuming a finite amplitude of the interface between the
upper and middle layer implies that the thickness of the highly
viscous middle layer varies laterally by ±7 per cent (in the case of
an initial maximum topography of 7 km). This variation increases
the effective viscous flexural rigidity and leads to a slightly longer
relaxation time.

2.5 Traction-derived topography at a free-slip surface

In this section, we briefly discuss the first method to calculate dy-
namic topography from normal stresses commonly used by the
convection community (e.g. Burkett & Billen 2009). This method
utilizes the vertical component of the stress vector (traction) at the
vertically fixed, but horizontally free (free slip) surface. This ap-
proach is based on a Taylor series expansion of the vertical stress
beneath a fully free surface. Let z0 (positive upwards) be the fixed
vertical position of the non-flexible surface of the convection model
of vertical dimension L, and h be the real dynamic topography above
z0 of an equivalent model with a fully free surface. The xz- and zz-
components of the stress tensor of the latter model at the position
z0 can be determined as a Taylor series about z0 + h

σxz(z0) = O

(
nx

nz
σch

)
+ O

(
h

L
σch

)
+ HOT, (24)
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σzz(z0) = −ρgh + O

(
nx

nz
σch

)
+ O

(
h

L
σch

)
+ HOT, (25)

where ρ is the density near the surface, g is the gravitational accel-
eration, σ ch is the characteristic stress associated with the flow, nx

and nz are the horizontal and vertical components of the unit normal
vector at the free surface and HOT are the higher order terms. Thus,
nx/nz is the slope of the free surface. From eq. (24), we see that
assuming a non-flexible free-slip surface is only justified if (a) the
slope of the free surface is small (�1) and (b) if the topography
is sufficiently small (h/L � 1). Under these conditions, eq. (25)
reduces to the usual traction derived dynamic topography to,

h = −σzz

ρg
. (26)

It should be emphasized, that eq. (26) contains the full stress, includ-
ing the dynamic pressure. Care has to be taken if lateral viscosity
variations occur near the surface, which may deteriorate the pressure
and thus topography (King 2009).

3 M E T H O D S

3.1 Numerical details

The finite element codes MILAMIN_VEP, UNDERWORLD and
SULEC provide calculations applying a true free surface, which are
used as reference in the Case 2 setup. FDCON performs all the free
slip cases. Sticky air results are provided by calculations of UN-
DERWORLD, SULEC, FDCON, I2VIS and STAGYY. All codes
were extensively tested previously and provide runs at independent
resolution. Resolution and further numerical details of each code
are listed in Table 1.

Codes that use a sticky air layer and do not follow topography
with a deforming Lagrangian grid, can either derive topography by

using a marker chain that follows the interface (SULEC, FDCON,
I2VIS), by a set of passive markers that are initially defined on
the interface and subsequently advected by the fluid flow (UNDER-
WORLD), or estimate topography from Eulerian nodes that read the
compositional information (air or rock) from markers (STAGYY).
Marker chains and passive markers are advected using the same
techniques as compositional tracer advection and the precision de-
pends, therefore, on the advection technique and the marker density
along the chain. Similarly, the precision of the STAGYY approach
depends on the marker density within the cells.

3.2 Participating codes

3.2.1 MILAMIN_VEP

MILAMIN_VEP (used by authors Golabek and Kaus) is a finite-
element (FE) code (see Kaus et al. (2008)), which uses the efficient
method to construct the stiffness matrix described by Dabrowski
et al. (2008). The code employs a velocity–pressure formulation
for the mechanical equations, with quadrilateral elements using ei-
ther quadratic shape functions for velocity and discontinuous linear
shape functions for pressure (Q2P−1), or linear shape functions
for velocity and a discontinuous constant pressure shape function
(Q1P0). This latter element is used for the results presented here. A
free-surface stabilization algorithm (FSSA) is applied (Kaus et al.
2010). Calculations using both element types and the FSSA yield
very similar results to models without FSSA, but with sufficiently
small time steps. The code is employed in a Lagrangian manner, in
which the elements are deformed at each time step. If the elements
are too distorted, remeshing is applied. Tracers are employed to track
material properties. Material properties are computed from tracers
by computing the dominant phase at each integration point, after
which the integration point values are averaged over the element.

Table 1. Numerical setups used in this work.

Detail MILAMIN_VEP SULEC UNDERWORLD FDCON I2VIS STAGYY

Numerical method FE ALE FE FD FD FD
Top boundary f.surf st.air/f.surf st.air/f.surf st.air/f.slip st.air st.air

Case 1 Grid points 561 × 141 401 × 386a 560 × 320 251 × 81 751 × 394b 512 × 128
401 × 201 256 × 64 -

Tracers 10′570′002 9 part./elem. 36 part./elem. 260 part./cell 49 part./cell 100 part./cell
9 part./elem. 36 part./elem. -

Sticky air nz – 25c 40c 10c 49 16c

Case 2 Grid points 841 × 211 401 × 376a 560 × 340 401 × 123 750 × 304b 1024 × 256
401 × 251 140 × 140d 401 × 101

Tracers 10′570′002 9 part./elem. 36 part./elem. 250 part./cell 49 part./cell 100 part./cell
9 part./elem. 36 part./elem. 142 part./cell

Sticky air nz – 31c 42c 15c 38 32c

Tracer distribution Denser at box centre Evenly Evenly Vertically 4 ×
denser

Evenly Evenly

Viscosity averaging Harmonic Harmonic (see Section 3.2.3) Arithmetic Arithmetic Geometric
Topography tracking Distorted L. grid Marker chain Passive markers Marker chain Marker chain Markers

stretched
E. grid

distorted
L. grid

normal stress

Note: FE, finite element; FD, finite difference; ALE, arbitrary Lagrangian Eulerian; f.surf, true free surface; f.slip, free slip; st.air, sticky air; E., Eulerian; L.,
Lagrangian.
aDenoted are numbers used for a sticky air thickness of hst = 100 km. 20 nodes per 50 km of additional sticky air thickness are added in the vertical direction.
bDenoted are numbers used for a sticky air thickness of hst = 100 km. The number of vertical gridpoints is adjusted to keep the resolution constant at �z =
2 km.
cDenoted are numbers used for a sticky air thickness of hst = 100 km, which are for any given thickness: nz,st = nz · hst/hmodel.
dCovers (due to symmetry) only half of the domain width and would correspond to a full model resolution of 280 × 140 gridpoints.
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Using tracers in combination with a Lagrangian FEM framework
has the advantage that only local tracer coordinates are required
(inside an element), since global coordinates can be retrieved by
multiplying with the element shape function. Calculations for Case
1 are performed with a resolution of 561 × 141 nodes and for Case 2
841 × 211 nodes are used. Over 10 million tracers are implemented
for both cases.

3.2.2 SULEC

SULEC (used by author Buiter) is an Arbitrary Lagrangian Eu-
lerian finite-element code developed by Buiter and S.M. Ellis. It
solves the equation for conservation of momentum for slow creep-
ing flows under the condition of incompressibility (eqs 20 and 21).
The equations are discretized on a Eulerian mesh built of quadri-
lateral elements, which use linear shape functions for velocity and
constant pressure (Q1P0). We use the direct solver Pardiso (Schenk
& Gärtner 2004). Pressure is computed as mean stress in an itera-
tive penalty formulation (Pelletier et al. 1989). We present SULEC
results for both a true free surface and for an approximation to a
free surface by a sticky air layer. A true free surface is obtained by a
slight vertical stretch of the Eulerian mesh to accommodate surface
displacements and the effects of surface processes (Fullsack 1995).
SULEC includes stabilization of interfaces with a strong density
contrast, such as Earth’s surface (Kaus et al. 2010; Quinquis et al.
2011). For models with a sticky air layer, we track the crust–air
interface with a connected string of points (a marker chain of 1603
points). This string follows the top surface of the lithosphere and
is, therefore, not disturbed by the high deformation rates that can
occur in the ‘sticky air’. Material properties, stresses and strains
are advected with tracer particles. The models in this study use
harmonic averaging of viscosity from tracers to elements and arith-
metic averaging for density. The resolution for Case 1 is 401 × 201
nodes with 1203 × 603 tracers and 401 × 251 nodes with 1203 ×
753 tracers distributed over the lithosphere and mantle domain are
used for Case 2. For setups using a sticky air layer, more nodes and
particles are added in the vertical direction.

3.2.3 UNDERWORLD

UNDERWORLD (used by author May) is an open-source
(http://www.underworldproject.org), geodynamic modelling frame-
work capable of deriving viscous/visco-plastic thermal, chemical
and thermochemical models consistent with tectonic processes,
such as mantle convection and lithospheric deformation over long
timescales. UNDERWORLD utilizes a parallel 2-D/3-D finite ele-
ment discretization to solve the incompressible Stokes flow prob-
lem. Constitutive behaviour, material properties (e.g. viscosity,
density) and history variables (e.g. plastic strain, elastic stress) are
discretized via a swarm of Lagrangian markers (Moresi et al. 2003,
2007). The novelty of the marker approach used here is that the ma-
terial points are also used as the quadrature points used to evaluate
the element stiffness matrices which are a function of the con-
stitutive behaviour and or, the material properties. Consequently,
no interpolation is directly required between the marker proper-
ties and the finite element mesh. The saddle point problem arising
from the discretization of the incompressible Stokes flow problem
is solved using the Schur complement reduction (SCR) method.
UNDERWORLD utilizes the Portable, Extensible Toolkit for Sci-
entific Computation (PETSc; Balay et al. 2008) to provide support
for parallel linear algebra, a wide range of Krylov subspace methods
and direct solvers as well as multilevel pre-conditioners. The results

in Case 1 are performed using 560 × 320 (sticky air model) and
256 × 64 (true free-surface model) Q1P0 elements. The resolution
for Case 2 is set to 560 × 340 (sticky air model) and 140 × 140
(true free-surface model) elements, where the latter setups cover
only half of the domain. All models are run with 36 particles per
element. In Case 2, the topography profile was determined using a
set of passive markers initially located on the interface between the
air and the crust. In both, the sticky air and the free-surface models,
5000 evenly spaced markers were used to track the topography. A
direct solver is used for the velocity sub-problem which is required
to be solved by SCR. All calculations are performed using version
1.5.0 of UNDERWORLD.

3.2.4 FDCON

The code FDCON (used by authors Schmeling and Orendt) is a
finite difference code. Eqs (20) and (21) are rewritten as the bi-
harmonic equation in terms of the stream function and variable
viscosity (e.g. Schmeling & Marquart 1991). The FD formulation
of the biharmonic equation results in a symmetric system of linear
equations, which is directly solved by Cholesky decomposition. The
advection equation is solved by a marker approach (e.g. Weinberg &
Schmeling 1992). The region is filled with markers, which carry the
information of composition k. The concentration ck of composition
k at any FD gridpoint is determined by the number of markers of
composition k found within a FD-cell sized area around the grid-
point divided by the total number of markers present in the same
cell. The density and viscosity at any gridpoint are determined by
ck-weighted averaging using the arithmetic mean. The markers are
advanced by a fourth-order Runge–Kutta scheme, combined with
a predictor–corrector step. For this predictor–corrector step, mark-
ers are provisionally advanced by two first-order Eulerian steps.
The momentum equation is solved for these preliminary steps to
obtain the corresponding velocity fields. These velocity fields are
then taken for the full fourth-order Runge–Kutta step to advance the
markers. Case 1 is resolved using 251 × 81 gridpoints with 1280 ×
4120 markers. For Case 2, 401 × 123 gridpoints with 3200 × 3840
markers (sticky air model) and 401 × 101 gridpoints with 4800 ×
1200 markers (free-slip model) are used.

3.2.5 I2VIS

I2VIS (used by authors Duretz and Gerya) is a thermo-mechanical
code developed by Gerya & Yuen (2003b). This numerical code is
based on conservative finite differences. The momentum equations
are discretized on a Eulerian staggered grid and the resulting system
of linear equations is then solved using the direct solver Pardiso
(Schenk & Gärtner 2004). The advection equation is treated using a
Lagrangian marker-and-cell technique. Each time step, the markers
are advected using a fourth-order in space Runge–Kutta scheme.
Mapping between Lagrangian markers and Eulerian nodes is carried
out by mean of linear distance-weighted interpolation. In this paper,
the nodal viscosities are computed as the arithmetic mean of the
viscosity of the surrounding markers. Calculations for Case 1 are
performed with a resolution depending on the sticky air thickness
that uses up to 751 × 394 gridpoints. 750 × 304 gridpoints are used
for Case 2. 7 × 7 markers per cell are used for both cases.

3.2.6 STAGYY

STAGYY (used by authors Crameri and Tackley) is a finite differ-
ence/finite volume code developed by Tackley (1993, 2008). The
code solves the equations of highly viscous flow on a staggered
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grid. A multigrid iterative solver is used. Tracer particles are used
to track the different compositions, which are in this case sticky
air, lid, mantle and plume in Case 2. Tracer advection is done by
a fourth-order in space Runge–Kutta technique integrating the ve-
locity field. The fraction of each material type in each grid cell is
determined using the same method as in FDCON except using a
linear weighting function to integrate over nearby tracers (Tackley
& King 2003). Material properties density and viscosity are then
calculated for each cell from the material fractions. Numerical ex-
periments using the initial setup of Case 1 are performed using
512 × 128 gridpoints with 6.5 million tracers, whereas the reso-
lution for Case 2 is set to 1024 × 256 gridpoints with 26 million
tracers.

4 R E S U LT S

The results for both model setups (Cases 1 and 2) from the different
numerical codes using different upper boundary descriptions are
described in the following sections. A quantitative overview on
the results including the according sticky air parameter and model
resolution is given in Table S1.

4.1 Case 1

The Case 1 initial topography relaxes to equilibrium over about
100 ka. Fig. 2 shows the comparison of this topographic decay
between the different free-surface approaches and the analytical
solution (eq. 23). The results of the sticky air approach are given
for identical layer thickness of 100 km but with different viscosity
thereof (Figs 2a and b) and for different layer thickness and identical
viscosity (Figs 2c and d). The results differ significantly depending
on the parameters defining the weak air layer. Lithospheric deforma-
tion becomes increasingly difficult when decreasing the thickness
of the air layer or when increasing its viscosity. The resulting to-
pography (measured at the maximum topography) thus diverges
from the analytical solution that is given after one relaxation time
of 14.825 ka. This inaccuracy in topography of lithospheric adjust-
ment arising from different parameters of the sticky air layer (hst,
ηst) is presented spatially in Fig. 3(a) and temporally in Fig. 3(b),
both related to the relaxation time trlx. Fig. 3(b) shows the relative
errors at one relaxation time using an initial maximum topography
of 7 km (solid lines). To check the validity of these results with
respect to the initial amplitude of topography, further experiments
were carried out using an order of magnitude smaller initial maxi-
mum topography of 700 m (dashed lines). Both cases are computed
with identical resolution (see Table 1) and show good agreement.

The prediction of the sticky air quality depending on thickness
and viscosity is given by eq. (12) with the condition of Cisost �
1 for suitable sticky air parameters (Fig. 3c). The comparison to
the results presented in Figs 3(a) and (b) shows good agreement.
Favourable weak layer thicknesses are, therefore, hst > 50 km for
ηst = 1018 Pa s, hst > 110 km for ηst = 1019 Pa s and hst > 240 km
for ηst = 1020 Pa s as indicated by the grey shaded areas in Fig. 3.

A sticky air that yields a C-value of C > 1 can significantly influ-
ence correct topography evolution and results in large errors. The
errors for different Cisost values are shown in Fig. 4. The influence
of the sticky air layer is minimized towards low Cisost values and
becomes acceptable for Cisost � 1. The topography error of 100 m
for the best case shown in Fig. 2(b) achieved by a Cisost value of
∼0.1 can further be reduced to for example, 40 m at Cisost = 10−2.
The relative temporal error is reduced down to less than 0.2 per cent

for Cisost = 10−2. The slight increase at lowest Cisost values is due
to resolution: all cases shown in Fig. 4 are calculated using con-
stant number of gridpoints, but the thickness of the sticky air layer
and thus also the thickness of the model increase towards lower
Cisost values. This shows the trade-off between physical accuracy
and numerical expense and is discussed in Section 5.2.

4.2 Case 2

In Case 2, a buoyant body rises and approaches the lithosphere. After
about 8–10 Ma it begins to flatten and spreads near the base of the
lithosphere (Fig. 5). Although in Case 1 traction-derived topography
at a free-slip surface is not possible, Case 2 allows us to compare
this method with the other free-surface calculation methods. An
analytical solution, on the other hand, is not available for this model
and the results are, therefore, compared to a high resolution, true
free-surface result of MILAMIN_VEP.

4.2.1 Topography at a free surface

The analytical prediction of eqs (18) and (19) is applied to the model
of Case 2. Figs 6(a) and (c) show the long-term evolution of the
maximum topography for the different codes compared to the real
free-surface approach given by MILAMIN_VEP and the according
versions of SULEC (‘SULEC free surface’) and UNDERWORLD
(‘UNDERWORLD free surface’). Again, experiments using a low
viscosity and/or a thicker weak-surface layer perform better in con-
verging to the real free-surface results. In contrast to Case 1, the
longer lasting topography evolution is less sensitive to the sticky
air parameters, which is also accounted for in the Stokes condition
given in eq. (18). Results start to diverge from the true free-surface
topography only when using a thin sticky air layer combined with
a high sticky air viscosity (Fig. 6c). Short-term dynamics (e.g. iso-
static adjustment) might be unresolved in these models, although
the long-term condition is satisfied by the sticky air parameters if
CStokes is less than 1 (Fig. 6d). Adjusting the sticky air parameters to
a more restrictive condition than the one discussed earlier provides
the resolution not only for the long-term geodynamics but also for
the isostatic adjustment occurring in the beginning of the simulation
(Fig. 6b). Using here sticky air parameters of hst = 150 km and ηst =
1018 Pa s satisfies both conditions (Cisost = 0.04 and CStokes = 1.9
× 10−4), whereas a sticky air using hst = 10 km and ηst = 1018 Pa s
satisfies only the long-term (CStokes = 0.65) but not the short-term
condition (Cisost = 133).

Snapshots of the viscosity field and of the surface topography at
different times are given in Figs 5 and 7, respectively. The litho-
sphere starts to deflect shortly after the beginning of the plume
rise and the point of maximum topography continues to uplift until
about 17 Ma. Thereafter, the laterally spread plume is not able to
maintain the weight of the lithospheric bulge, which subsequently
starts to relax.

4.2.2 Traction derived topography at a free-slip surface

The black solid line in Figs 6(a) and (b) shows the traction-derived
topography using eq. (26) of a Case 2 run without sticky air, that is,
with a non-flexible free slip surface (FDCON, nx = 401, nz = 101,
4800 × 1200 markers). In contrast to the fully free-surface cases
or the cases with sticky air, immediately at time 0 the topography
is fully developed, that is, this approach fully missed the isostatic
adjustment stage. In other words, using eq. (26) gives the dynamic
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Figure 2. Maximum topography of Case 1 over time from the analytical solution (black), from three real free-surface simulations (reddish lines) and from the
sticky air approach (coloured lines) shown for (a) a 100-km-thick layer and low, intermediate and high viscosities and for (c) a viscosity of ηst = 1019 Pa s and
for thin, intermediate and thick sticky air layer thickness. (b, d) Close-up as marked by the square in (a, c). The relaxation time of 14.825 ka is indicated as
dashed grey line and sticky air condition Cisost (eq. 12) is given for the different parameters.

topography always in the limit of instantaneous isostatic adjustment.
The instantaneous reaction of tractions therefore causes the true
topography to look temporarily delayed compared to the free slip
result.

Secondly, the free-surface models show viscous bending during
the early isostatic adjustment phase (not shown), that is, negative
side lobes on both sides of the positive topography. Any topography
associated with viscous plate bending cannot be captured with non-
flexible traction derived topography models. At times longer than

the isostatic relaxation time there is good agreement with the sticky
air and the fully free-surface models.

5 D I S C U S S I O N

5.1 Time step requirements

A disadvantage of numerical calculation of viscous flow using either
a free surface (Lagrangian FEM) or the sticky air approach is, that
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Figure 3. (a) Topography offset for different sticky air layer thickness at the characteristic time (trlx = 14.825 ka) for Case 1. (b) Relative temporal error
between numerical (trlx,num) and analytical (trlx) relaxation time of reaching the analytically derived topography at trlx also shown for an initial topography of
only 700 m height (dashed lines). (c) Analytical prediction of the quality of the free-surface approach given in eq. (12) (recommended if C � 1) and shown as
according shaded areas. Curves show low (light colours) to high (dark colours) sticky air viscosity.

they may give rise to numerical oscillations related to time-step
restrictions (Kaus et al. 2010; Quinquis et al. 2011). This effect
may occur when advecting large density contrasts or a true free
surface. To avoid such oscillations, usually the time step has to be
chosen to be significantly smaller than the isostatic relaxation time
(eq. 10). Kaus et al. (2010) derived a correction term to be added
to the equation of momentum allowing for larger time steps (see
also Duretz et al. 2011). This stabilization term is implemented in
MILAMIN_VEP and SULEC.

Another approach to that problem is given by a more accurate,
but more expensive calculation. It is done by the combination of
a predictor-step with fourth-order Runge–Kutta advection as per-
fomed in FDCON (Schmeling et al. 2008, and see description in
Section 3.2.4). With such a predictor step, the time step may exceed

the relaxation time by up to several times (e.g. Fuchs et al. 2011).
In the present Case 2, the relaxation time is about 15 ka (cf. Case 1),
and time steps up to 16–32 ka could be used to get non-oscillating
stable results with FDCON.

5.2 Free-surface approach using sticky air

Apart from the points discussed in the previous section, a low sticky
air viscosity reduces the advective time step due to higher velocities
in the air layer and gives rise to numerical problems. On the other
hand, as implied by our C-parameters, a high sticky air viscosity re-
sults in unphysical effects: the sticky air layer induces larger stresses
on the surface that inhibit correct topography evolution.
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Figure 4. (a) Topography error and (b) relative temporal error [(trlx,num − trlx)/trlx] of Case 1 results (STAGYY) in dependence of Cisost (eq. 12). Errors are
small for Cisost � 1.

Figure 5. Temporal evolution of a Case 2 simulation calculated by STAGYY with ηst = 1019 Pa s and hst = 150 km shows the viscosity field at 0, 4, 8, 12, 16
and 20 Ma, indicated as dashed lines in Figs 6(a) and (c).
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Figure 6. Maximum topography of Case 2 for three real free-surface simulations (reddish lines) and free-surface simulations using the sticky air (coloured
lines) shown for (a,c) long-term evolution and (b,d) short term isostatic adjustment. (a,b) Comparison of a free-slip simulation (thick black line) and several
sticky air results that use a 150 km thick weak surface layer and variable viscosity. (c,d) Sticky air results (I2VIS) using a 10 km thin weak surface layer and
variable viscosity. The sticky air condition CStokes (eq. 18) is given for different parameter and is not satisfied for a sticky air viscosity of 1020 (dotted line) or
1019 Pa s (dashed line) but is satisfied for 1018 Pa s (solid line). The vertical grey lines indicate the time of the snapshots given in Figs 5 and 7.
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Figure 7. Surface topography comparison between three real free-surface simulations (reddish lines) and simulations using the sticky air approach (coloured
lines) with ηst = 1019 Pa s and hst = 150 km at (a) 4 Ma, (b) 8 Ma and (c) 16 Ma. Small plots show zoom-in on the maximum topography.

If properly numerically resolved, a thicker sticky air layer can
counteract these large stresses induced by its high viscosity to some
degree. Deformation of the sticky air layer proceeds easier when its
thickness is sufficiently large (see also Section 2.1 and Fig. 2c).

Topography evolving underneath a sticky air layer usually de-
mands the resolution of different timescales. Short timescales (up
to several kiloannum) comprising isostatic relaxation require a well-
conditioned sticky air layer (see Figs 2 and 3). Long timescales (on
the order of millions of years) given by the topographic signal of a
rising plume are on the other hand less restrictive on the parameters
defining a well suited sticky air layer (see Figs 6 and 8).

The close-ups in Fig. 2 show that the true free-surface models lie
above the analytic solution by about 1–2 per cent whereas the sticky
air models deviate by 4–6.7 per cent. We believe that the first devi-
ation indicates that our highly viscous layer with ±7 per cent thick-
ness variations relaxes 1–2 per cent slower than a constant thickness
layer as assumed in the analytic solution. The systematically higher
values of the sticky air models indicates that the air still has a
non-negligible influence at the parameter choices given in Fig. 2.
Models having more suitable parameters are comparable to true
free-surface models (e.g. hst = 200 km, ηst = 1018 Pa s with a
deviation of 1.4 per cent).

5.3 Effect of numerical resolution

Additional experiments are performed using the Case 2 setup to test
a possible influence of numerical setups on the accuracy of topog-

raphy. The results of I2VIS are presented for different resolution
in space and time and are given in Tables 2 and 3, respectively.
Spatial resolution is tested varying both, the number of gridpoints
and the number of markers per cell. The resulting topography at 3
Ma is compared to the high resolution, true free-surface result of
MILAMIN_VEP (Table 2). At low resolution, the topography at
3 Ma is overestimated by more than 100 m. An increase in either
the number of markers per cell or the number of gridpoints can
lead to better results that lie within a few metres range around the
high-resolution true free-surface result. The variability in the metre-
scale at high-resolution cases might be related to the fluctuation
problem discussed in Section 5.4. A too-large time step can similarly
influence the topographic evolution of the model. Constant time
steps between 250 and 4000 yr are therefore tested for the Case
2 setup. In contrast to low spatial resolution, insufficient temporal
resolution (i.e. using a large time step) does underestimate the true
free-surface result at 3 Ma. The difference in topography is smaller
and in the order of a few tens of metres.

5.4 The fluctuation problem

Using the marker approach and approximating the free surface by a
sticky air layer, it is often observed that the surface becomes rough,
exhibiting undesired spatial fluctuations. Fig. 7 shows that this ef-
fect also occurs in Case 2 with amplitudes of more than 100 m.
Surprisingly, even in the absence of any driving force or buoyant
bodies, fluctuations appear and increase asymptotically with time
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Figure 8. (a) Topography offset of sticky air approaches relative to highest resolution true free surface result (from MILAMIN_VEP) at 4 Ma for different
sticky air layer thickness for Case 2. (b) Analytical prediction of the quality of the free-surface approach given in eq. (18) (recommended if C � 1) and shown
as according shaded areas. Curves show low (light colours) to high (dark colours) sticky air viscosity.

Table 2. Spatial resolution test performed for different number of gridpoints
and markers per cell. Shown are max. topography and the difference to the
max. topography of the true free-surface result of MILAMIN_VEP.

Max. topography (m)a/Topo. difference [m]b

Grid points
301 × 101 601 × 201 1201 × 401

Markers/cell 2 × 2 531/ + 133 425/ + 27 397/–1
4 × 4 417/ + 19 381/ – 17 392/–6
6 × 6 399/ + 1 394/ – 4 393/–5

Note: Time step: �t = 1000 a.
Sticky air: hst = 100 km; ηst = 1018 Pa s (CStokes = 6.5 × 10−4).
aFor Case 2 at t = 3 Ma using code I2VIS.
bCompared to true free-surface result of MILAMIN_VEP (398 m).

into white noise fluctuations of the surface. Fig. 9 shows an example
(FDCON, Case 2, no buoyant cylinder, nx = 421, nz = 121, 1280 ×
2560 markers), in which this effect leads to topography fluctuations
with amplitudes in the order of 50–80 m. Interestingly, the fluctu-
ations start with a long wavelength, whereas shorter wavelengths
form at later stages.

This behaviour can be understood as follows. At time zero, the
lithosphere—sticky air interface (dashed line in Fig. 10) is pre-
scribed as a flat line. However, the finite and irregular distances

Table 3. Temporal resolution test.

Time step Max. topographya Topo. differenceb

(a) (m) (m)

4000 378 −20
2000 380 −18
1000 381 −17
500 395 −3
250 397 −1

Note: Uniform resolution: 601 × 201 nodes, 4 × 4
marker/cell.
Sticky air: hst = 100 km; ηst = 1018 Pa s (CStokes =
6.5 × 10−4).
aFor Case 2 at t = 3 Ma using the code I2VIS.
bCompared to true free-surface result of
MILAMIN_VEP (398 m).

between markers constrain the interface only within a finite irreg-
ular band. Adopting a tentative ‘uncertainty principle’ the position
of the interface is uncertain, and its most probable position may
be found by formulating a condition of optimizing equal distances
to nearby markers of different type (lithosphere or sticky air). This
position of the virtual sticky air interface is indicated by the red
curve in Fig. 10(a). This irregular interface is associated with ir-
regular buoyancy forces at the gridpoints, leading to small velocity
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Figure 9. Evolution of the surface of the lithosphere of Case 2, but without a buoyant cylinder, that is, without any driving force. (a) Vertical position of one
marker (at central position indicated by the vertical, dashed line Fig. 9b) at the surface of the lithosphere with time, (b) topography profiles after 200 ka, 2 Ma,
5 and 10 Ma as also indicated by the vertical, coloured lines in Fig. 9a. (Calculated by FDCON using a sticky air configuration of hst = 100 km and ηst = 1019

Pa s.)

Figure 10. Sketch of tracer distribution at the boundary between lithosphere
(green) and sticky air (cyan) showing the real interface (dashed line) and
the virtual interface (red line) for (a) the initial and (b) the final setup after
relaxation.

variations. These velocities displace the markers until complete
relaxation is achieved and the virtual sticky air interface is flat
(Fig. 10b). As a matter of fact, the initially prescribed flat interface
(dashed curve) is displaced in opposite direction. Thus this effect
resembles isostatic relaxation of an irregular interface, which has a
relaxation time given by eq. (10), in which λ now is the wavelength

of the relaxing perturbation. Long wavelengths relax fastest, which
is clearly depicted in Fig. 9b. Also the amplitude of the fluctuation
of a given wavelength λ can be estimated, which is given by the
mean half vertical distance between markers, �zm/2, reduced by
a factor 1/

√
λ/�xm , which results from horizontal averaging over

approximately λ/�xm markers. Thus, we get the final amplitude of
the fluctuations of a certain wavelength of the following order of
magnitude:

hfluct = O

(
�zm

√
�xm

2
√

λ

)
. (27)

This estimate gives 60 m for the parameters of the model shown
in Fig. 9, which is in good agreement with the numerical amplitudes.
Eq. (27) gives us a good rule of how to minimize the fluctuations:
the vertical distance needs to be chosen smaller than the horizontal
distance.

Another way of preventing these fluctuations is to discretize the
free surface (dashed line in Fig. 10) with the help of a marker chain.
The viscosity of the nodal points above this chain can consequently
be set to sticky air values. This method would further allow to easily
implement more sophisticated erosion models to the code.

The accuracy of the sticky air models is locally (i.e. on the marker
scale) in the order of the marker ‘uncertainty principle’. Depending
on the number of markers in z-direction (nmz), this results in errors
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in the order of one one-thousandth for the whole model domain
(1/nmz). On the numerical grid scale this error is reduced by a factor
sqrt (nx/nmx), as one has to average over (nx/nmx) marker positions.
Thus, the numerical accuracy of the topography of the sticky air
models is very high. Only if taken relative to the total topography the
errors appear bigger and are in the order of 5–10 per cent for sticky
air parameters around Cisost > 0.1 and in the order of 1–2 per cent
for Cisost < 0.1.

5.5 True free surface versus sticky air approach

Two codes participating in our comparison, SULEC and UNDER-
WORLD, have a true free surface, but have also run the cases
with a sticky air layer. Their experiences and results can, therefore,
be used to discuss the advantages and disadvantages of the two
methods. A true free surface obtained by adjusting the location of
nodes within a structured grid with fixed connectivity combined
with tracer tracking (such as in SULEC and UNDERWORLD), re-
quires in principle few special considerations. Compared to fixed
grid methods, the free-surface approaches are more computation-
ally expensive. SULEC and UNDERWORLD employ a structured
mesh with a fixed number of elements in each direction. The con-
stant connectivity of the mesh implies that the same matrix non-
zero structure can be reused at every time step. To redefine the
node locations, SULEC vertically shifts the nodal coordinates at
the free surface so that they conform to the free surface. The nodes
below each surface node are adjusted, keeping the relative grid
spacing in the vertical direction the same. UNDERWORLD em-
ploys a fully Lagrangian update of the free-surface coordinates. To
ensure good mesh quality, a simple mesh smoothing algorithm is
used to adjust the nodal coordinates within the domain. Because
of the grid modification, these methods are computationally ex-
pensive and this is where fixed grid methods have a computational
advantage.

The requirement of a vertically fixed surface boundary condition,
however, necessitates an approximation to simulate a free surface,
such as the sticky air method. Comparing a true free surface versus
a sticky air in an ALE-type code, we find that the sticky air layer
requires:

(1) The ability to handle large viscosity contrasts at the surface
(up to five orders of magnitude in our examples). However, this
constraint becomes less severe when brittle deformation near the
surface would be considered. Brittle strength is low at the surface,
resulting in a smaller viscosity difference with the sticky air.

(2) Tracking of the air–rock interface. SULEC uses a marker
chain and the precision with which the air–rock interface is found
depends on the marker chain advection and resolution. However,
the precision of the true free-surface approach is determined by
the spacing of the nodes of the Eulerian grid. We find that three
marker chain particles per element are sufficient to resolve the
air-rock interface to within the true free-surface position. UN-
DERWORLD does not explicitly track the free surface in the
sticky air experiments. All material properties are defined using
a set of markers, which provide a volumetric representation of the
fluid.

(3) Avoiding that the high velocities in the weak sticky air layer
contribute to advection of the rock–air interface. To avoid deforma-
tion of the marker chain used in SULEC, the marker chain is placed
slightly below the air–rock interface.

(4) A high resolution in the sticky air layer. This is especially
important near the air–rock interface and can be relaxed at larger

altitudes in the air layer. SULEC uses a vertical element size down
to 250 m at the air–rock interface. This requirement can result in
the sticky air solution becoming computationally expensive (e.g. in
global convection models).

(5) Monitoring of markers that overshoot the air–rock interface
(air-in-crust or crust-in-air) although this occurrence is not observed
for all the codes. These need to be either reassigned or removed
(potentially violating mass conservation).

It is important to keep in mind that a stabilization algorithm needs
to be applied to both a true free surface and the air–rock interface
(Kaus et al. 2010; Quinquis et al. 2011). It is the density difference
that requires the stabilization, so using a sticky-air layer does not
overcome the stabilization requirement. Duretz et al. (2011), how-
ever, demonstrated that it is possible to add a stabilization method
to finite difference formulations in a straightforward manner as well
without loss of solution accuracy.

Which approach to prefer, a true free surface or a sticky-air layer,
depends on the problem at hand and the tools that are available.
Studies that focus on small-scale structures near the surface (on
the order of a few kilometres or less) are probably better off using
a true free surface, due to the strict requirements on tracking and
resolution. Studies that focus on structures at deep mantle depths
can reach a more than sufficient approximation to a free surface
with a relatively coarse (and therefore not so expensive) sticky air
layer.

5.6 Application

The conversion from a free-slip surface to a physical more appro-
priate free surface can easily be implemented by the addition of
a sticky air layer and without changing boundary conditions. This
work presents the application of a free-surface approach using the
sticky air for two simple cases of geodynamic processes occurring
in a terrestrial planet. The list of possible geodynamic applications
is long and ranges from global terrestrial modelling to regional scale
geodynamics. For general cases, the dominant driving term of the
system should be evaluated to derive a prediction on the magni-
tude of surface movements (i.e. the maximum vertical velocity).
Thereby, this might be the sinking velocity of a slab or the Stokes
velocity of a rising plume in dynamic models or it might be given
by the prescribed velocity in kinematic models.

Using such an analytical prediction for maximum velocity, it is
possible to derive an individual C-condition from eq. (7) that is
adapted to the special model of interest. Suitable sticky air prop-
erties can, therefore, be easily computed. Moreover, they could be
monitored during a simulation by solving and monitoring the gen-
eral expression given in eq. (7) for the current maximum surface
velocity to ensure a proper topography evolution.

Although the present cases have been isothermal, the question
arises how to handle thermal effects in the case of thermomechani-
cal modelling. Here, we briefly mention possible approaches with-
out going into detail. (i) After solving the heat equation at each
time step in the full region including sticky air, the temperature
can be artificially set to a constant value (the surface temperature)
everywhere in the sticky air region. (ii) The heat conductivity of the
sticky air can be increased artificially by several orders of magni-
tude to mimic advective heat transport through the sticky air. In this
case, care has to be taken to guarantee that the heat equation solver
tolerates sharp conductivity contrasts, that is, an anisotropic marker
distribution suppresses the fluctuations.
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6 C O N C LU S I O N

Topography and surface evolution approached from numerical mod-
els is a field in development and requires careful treatment. We,
therefore, compared three approaches to compute numerical sur-
face topography. We find that non-flexible surface boundary mod-
els, which compute a traction derived topography, successfully pre-
dict dynamic and isostatic topography if the topography is small
compared to the model dimensions and if in addition topographic
slopes are small. The method fails to predict (i) the time-dependent
relaxation into isostatic equilibrium, (ii) short term (<trlx) topogra-
phy variations and (iii) the topography resulting from viscous plate
bending. On the contrary, the sticky air method is a good way to
simulate a free surface for Eulerian approaches, provided that its
parameters are chosen carefully. Eqs (12) and (18) give framework
conditions for a suitable sticky air application when C � 1, for
short term isostatic relaxation and long-term geodynamics, respec-
tively. Numerically feasible thick layers of low viscosity using for
example, 50 km with 1018 Pa s up to 500 km with 1020 Pa s give
good results not only for long term but also for short-term surface
movements. A general C-condition is further provided by eq. (7) to
check any given model setup using its maximum driving term (i.e.
the max. surface velocity). In this work, the sticky air layer is ver-
tically covered by at least four gridpoints (see supplementary Table
S1), which yields acceptable results. Spurious lateral fluctuations of
topography as observed in some marker-based sticky air approaches
may effectively be damped by an anisotropic distribution of markers
with a higher order of marker number per element in vertical than
in horizontal direction (eq. 27) or by using marker chains to track
the air–subsurface interface.
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Mühlhaus, H., Bourgouin, L. & Hale, A., 2007. Free surface modeling based
on level sets, ICCES, 3(4), 225–232.

C© 2012 The Authors, GJI, 189, 38–54

Geophysical Journal International C© 2012 RAS



54 F. Crameri et al.

Pelletier, D., Fortin, A. & Camarero, R., 1989. Are FEM solutions of incom-
pressible flows really incompressible? (or how simple flows can cause
headaches!), Int. J. Numer. Methods Fluids, 9(1), 99–112.

Poliakov, A. & Podladchikov, Y., 1992. Diapirism and topography, Geophys.
J. Int., 109(3), 553–564.

Pysklywec, R.N., Beaumont, C. & Fullsack, P., 2000. Modeling the behavior
of the continental mantle lithosphere during plate convergence, Geology,
28(7), 655–658.

Quinquis, M.E.T., Buiter, S.J.H. & Ellis, S., 2011. The role of boundary
conditions in numerical models of subduction zone dynamics, Tectono-
physics, 497(1–4), 57–70.

Quinteros, J., Ramos, V.A. & Jacovkis, P.M., 2009. An elasto-visco-plastic
model using the finite element method for crustal and lithospheric defor-
mation, J. Geodyn., 48(2), 83–94.

Ramberg, H., 1967. Gravity, Deformation, and the Earth’s Crust: In The-
ory, Experiments and Geological Application, Academic Press, London,
214pp.

Samuel, H. & Evonuk, M., 2010. Modeling advection in geophysical
flows with particle level sets, Geochem. Geophys. Geosyst., 11(8),
Q08020, doi:10.1029/2010GC003081.
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