1,422 research outputs found

    NIEL Dose Dependence for Solar Cells Irradiated with Electrons and Protons

    Full text link
    The investigation of solar cells degradation and the prediction of its end-of-life performance is of primary importance in the preparation of a space mission. In the present work, we investigate the reduction of solar-cells' maximum power resulting from irradiations with electrons and protons. Both GaAs single junction and GaInP/GaAs/Ge triple junction solar cells were studied. The results obtained indicate how i) the dominant radiation damaging mechanism is due to atomic displacements, ii) the relative maximum power degradation is almost independent of the type of incoming particle, i.e., iii) to a first approximation, the fitted semi-empirical function expressing the decrease of maximum power depends only on the absorbed NIEL dose, and iv) the actual displacement threshold energy value (Ed=21 eV) accounts for annealing treatments, mostly due to self-annealing induced effects. Thus, for a given type of solar cell, a unique maximum power degradation curve can be determined as a function of the absorbed NIEL dose. The latter expression allows one to predict the performance of those solar cells in space radiation environment.Comment: To appear on the Proceedings of the 13th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications, Villa Olmo (Como, Italy), 23--27 October, 2013, to be published by World Scientific (Singapore

    Hubble Space Telescope H-Band Imaging Survey of Massive Gas-Rich Mergers

    Full text link
    We report the results from a deep HST NICMOS H-band imaging survey of a carefully selected sample of 33 luminous, late-stage galactic mergers at z < 0.3. Signs of a recent galactic interaction are seen in all of the objects in the HST sample, including all 7 IR-excess Palomar-Green (PG) QSOs in the sample. Unsuspected double nuclei are detected in 5 ULIRGs. A detailed two-dimensional analysis of the surface brightness distributions in these objects indicates that the great majority (81%) of the single-nucleus systems show a prominent early-type morphology. However, low-surface-brightness exponential disks are detected on large scale in at least 4 of these sources. The hosts of 'warm' AGN-like systems are of early type and have less pronounced merger-induced morphological anomalies than the hosts of cool systems with LINER or HII region-like nuclear optical spectral types. The host sizes and luminosities of the 7 PG~QSOs in our sample are statistically indistinguishable from those of the ULIRG hosts. In comparison, highly luminous quasars, such as those studied by Dunlop et al. (2003), have hosts which are larger and more luminous. The hosts of ULIRGs and PG QSOs lie close to the locations of intermediate-size (about 1 -- 2 L*) spheroids in the photometric projection of the fundamental plane of ellipticals, although there is a tendency in our sample for the ULIRGs with small hosts to be brighter than normal spheroids. Excess emission from a young stellar population in the ULIRG/QSO hosts may be at the origin of this difference. Our results provide support for a possible merger-driven evolutionary connection between cool ULIRGs, warm ULIRGs, and PG~QSOs although this sequence may break down at low luminosity. (abridged)Comment: Paper to be published in the Astrophysical Journal; revised based on comments from referee. A PDF file combining both text and figures is available at http://www.astro.umd.edu/~veilleux/pubs/nicmos.pd

    Low, Milky-Way like, Molecular Gas Excitation of Massive Disk Galaxies at z~1.5

    Full text link
    We present evidence for Milky-Way-like, low-excitation molecular gas reservoirs in near-IR selected massive galaxies at z~1.5, based on IRAM Plateau de Bure Interferometer CO[3-2] and NRAO Very Large Array CO[1-0] line observations for two galaxies that had been previously detected in CO[2-1] emission. The CO[3-2] flux of BzK-21000 at z=1.522 is comparable within the errors to its CO[2-1] flux, implying that the CO[3-2] transition is significantly sub-thermally excited. The combined CO[1-0] observations of the two sources result in a detection at the 3 sigma level that is consistent with a higher CO[1-0] luminosity than that of CO[2-1]. Contrary to what is observed in submillimeter galaxies and QSOs, in which the CO transitions are thermally excited up to J>=3, these galaxies have low-excitation molecular gas, similar to that in the Milky Way and local spirals. This is the first time that such conditions have been observed at high redshift. A Large Velocity Gradient analysis suggests that molecular clouds with density and kinetic temperature comparable to local spirals can reproduce our observations. The similarity in the CO excitation properties suggests that a high, Milky-Way-like, CO to H_2 conversion factor could be appropriate for these systems. If such low-excitation properties are representative of ordinary galaxies at high redshift, centimeter telescopes such as the Expanded Very Large Array and the longest wavelength Atacama Large Millimeter Array bands will be the best tools for studying the molecular gas content in these systems through the observations of CO emission lines.Comment: 5 pages, 4 figures. ApJ Letters in pres

    Nuclear and Non-Ionizing Energy-Loss for Coulomb Scattered Particles from Low Energy up to Relativistic Regime in Space Radiation Environment

    Full text link
    In the space environment, instruments onboard of spacecrafts can be affected by displacement damage due to radiation. The differential scattering cross section for screened nucleus--nucleus interactions - i.e., including the effects due to screened Coulomb nuclear fields -, nuclear stopping powers and non-ionization energy losses are treated from about 50 keV/nucleon up to relativistic energies.Comment: Accepted for publication in the Proceedings of the ICATPP Conference on Cosmic Rays for Particle and Astroparticle Physics, Villa Olmo (Como, Italy), 7--8 October, 2010, to be published by World Scientifi

    Enhanced [CII] emission in a z=4.76 submillimetre galaxy

    Get PDF
    We present the detection of bright [CII] emission in the z=4.76 submillimetre galaxy LESS J033229.4-275619 using the Atacama Pathfinder EXperiment. This represents the highest redshift [CII] detection in a submm selected, star-formation dominated system. The AGN contributions to the [CII] and far-infrared (FIR) luminosities are small. We find an atomic mass derived from [CII] comparable to the molecular mass derived from CO. The ratio of the [CII], CO and FIR luminosities imply a radiation field strength G_0~10^3 and a density ~10^4 cm^-3 in a kpc-scale starburst, as seen in local and high redshift starbursts. The high L_[CII]/L_FIR=2.4x10^-3 and the very high L_[CII]/L_CO(1-0) ~ 10^4 are reminiscent of low metallicity dwarf galaxies, suggesting that the highest redshift star-forming galaxies may also be characterised by lower metallicities. We discuss the implications of a reduced metallicity on studies of the gas reservoirs, and conclude that especially at very high redshift, [CII] may be a more powerful and reliable tracer of the interstellar matter than CO.Comment: 5 pages, 2 figures; accepted for publication in Astronomy & Astrophysics Letter

    TDEM for Martian in situ resource prospecting missions

    Get PDF
    This paper presents a TDEM (Time Domain Electromagnetic Methods) application, addressed to the search for water on Mars. In this context, the opportunities for a TDEM system as payload in a future mission are investigated for different in situ exploration scenarios. The TDEM sounding capability is evaluated with respect to the expected Martian environment, and some considerations are made about the many unknown variables (above all the background EM noise and the subsoil composition) altogether with the limited resources availability (mission constraints in mass, time and power) and the way they could represent an obstacle for operations and measurements

    SARS-CoV-2 and extracellular vesicles: An intricate interplay in pathogenesis, diagnosis and treatment

    Get PDF
    Extracellular vesicles (EVs) are widely recognized as intercellular communication mediators. Among the different biological processes, EVs play a role in viral infections, supporting virus entrance and spread into host cells and immune response evasion. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection became an urgent public health issue with significant morbidity and mortality worldwide, being responsible for the current COVID-19 pandemic. Since EVs are implicated in SARS-CoV-2 infection in a morphological and functional level, they have gained growing interest for a better understanding of SARS-CoV-2 pathogenesis and represent possible diagnostic tools to track the disease progression. Furthermore, thanks to their biocompatibility and efficient immune activation, the use of EVs may also represent a promising strategy for the development of new therapeutic strategies against COVID-19. In this review, we explore the role of EVs in viral infections with a focus on SARS-CoV-2 biology and pathogenesis, considering recent morphometric studies. The common biogenesis aspects and structural similarities between EVs and SARS-CoV-2 will be examined, offering a panoramic of their multifaceted interplay and presenting EVs as a machinery supporting the viral cycle. On the other hand, EVs may be exploited as early diagnostic biomarkers and efficient carriers for drug delivery and vaccination, and ongoing studies will be reviewed to highlight EVs as potential alternative therapeutic strategies against SARS-CoV-2 infection
    corecore