54 research outputs found

    Photothermoplastic films for holographic recording

    Get PDF
    The electrophotographic and sensitometric characteristics of poly-N-vinyl carbazole photothermoplastic films, sensitized by an amorphous-Se sublayer are examined. It is shown that the photosensitivity of the material can be improved and its spectral range can be expanded by sensitization of amorphous Se with additions of Te, As, and Sb; this can be accomplished without a significant reduction in diffraction efficiency and resolving power

    Quantitative analysis of long-form aromatase mRNA in the male and female rat brain.

    No full text
    In vitro studies show that estrogens acutely modulate synaptic function in both sexes. These acute effects may be mediated in vivo by estrogens synthesized within the brain, which could fluctuate more rapidly than circulating estrogens. For this to be the case, brain regions that respond acutely to estrogens should be capable of synthesizing them. To investigate this question, we used quantitative real-time PCR to measure expression of mRNA for the estrogen-synthesizing enzyme, aromatase, in different brain regions of male and female rats. Importantly, because brain aromatase exists in two forms, a long form with aromatase activity and a short form with unknown function, we targeted a sequence found exclusively in long-form aromatase. With this approach, we found highest expression of aromatase mRNA in the amygdala followed closely by the bed nucleus of the stria terminalis (BNST) and preoptic area (POA); we found moderate levels of aromatase mRNA in the dorsal hippocampus and cingulate cortex; and aromatase mRNA was detectable in brainstem and cerebellum, but levels were very low. In the amygdala, gonadal/hormonal status regulated aromatase expression in both sexes; in the BNST and POA, castration of males down-regulated aromatase, whereas there was no effect of estradiol in ovariectomized females. In the dorsal hippocampus and cingulate cortex, there were no differences in aromatase levels between males and females or effects of gonadal/hormonal status. These findings demonstrate that long-form aromatase is expressed in brain regions that respond acutely to estrogens, such as the dorsal hippocampus, and that gonadal/hormonal regulation of aromatase differs among different brain regions

    Data from: Quantitative analysis of long-form aromatase mRNA in the male and female rat brain

    No full text
    In vitro studies show that estrogens acutely modulate synaptic function in both sexes. These acute effects may be mediated in vivo by estrogens synthesized within the brain, which could fluctuate more rapidly than circulating estrogens. For this to be the case, brain regions that respond acutely to estrogens should be capable of synthesizing them. To investigate this question, we used quantitative real-time PCR to measure expression of mRNA for the estrogen-synthesizing enzyme, aromatase, in different brain regions of male and female rats. Importantly, because brain aromatase exists in two forms, a long form with aromatase activity and a short form with unknown function, we targeted a sequence found exclusively in long-form aromatase. With this approach, we found highest expression of aromatase mRNA in the amygdala followed closely by the bed nucleus of the stria terminalis (BNST) and preoptic area (POA); we found moderate levels of aromatase mRNA in the dorsal hippocampus and cingulate cortex; and aromatase mRNA was detectable in brainstem and cerebellum, but levels were very low. In the amygdala, gonadal/hormonal status regulated aromatase expression in both sexes; in the BNST and POA, castration of males down-regulated aromatase, whereas there was no effect of estradiol in ovariectomized females. In the dorsal hippocampus and cingulate cortex, there were no differences in aromatase levels between males and females or effects of gonadal/hormonal status. These findings demonstrate that long-form aromatase is expressed in brain regions that respond acutely to estrogens, such as the dorsal hippocampus, and that gonadal/hormonal regulation of aromatase differs among different brain regions

    GAP-43 gene expression regulates information storage

    No full text

    mRNA sequence of rat aromatase.

    No full text
    <p>Exon boundaries in the rat mRNA sequence of cytochrome P450 (NCBI Reference Sequence: NM_017085.2) are marked in bold and highlighted in grey. An arrow indicates beginning of the translated region in the long form of aromatase. Untranslated regions have been grayed out. The 90 bp fragment (715–805) that was amplified in our qPCR and RT-PCR analyses is highlighted in yellow. The region that is thought to be missing in the truncated form of the enzyme involves the exons 2 and 3 and hence encompasses the sequence that was targeted in our study. The boxed nucleotides in the sequence indicate the start and the end of the RNA probe that protected only the long form of aromatase in ribonuclease protection assays <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0100628#pone.0100628-Roselli3" target="_blank">[10]</a>.</p

    Effect of gonadal/hormonal status on aromatase mRNA expression in different brain regions.

    No full text
    <p>Expression levels of the long form of aromatase were studied in the amygdala, BNST, POA, dorsal hippocampus, and cingulate cortex of castrated male, gonadally intact male, ovx female and ovx+E2 female rats. Each panel represents a different brain region. For each panel, qPCR amplification curves with relative fluorescent units (RFU) and the area punch dissected (red circle in the schematics of brain coronal sections, adapted from <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0100628#pone.0100628-Paxinos1" target="_blank">[48]</a>) are shown at the top. C<sub>T</sub> (cycle threshold) values on the amplification curve indicate the number of cycles required for the fluorescent signal to cross the threshold, which was set at 10 standard deviations above mean fluorescence generated during baseline cycles. Relative aromatase mRNA expression for each brain region is shown in bar graphs (ovx females set as 1.0) with representative images of agarose gels showing RT-PCR products for amplified aromatase (Aro) and GAPDH DNA fragments at the bottom. In the amygdala <b>(A)</b>, aromatase mRNA levels were affected by both sex (p = 0.006) and gonadal/hormonal status (p = 0.01), whereas in the BNST <b>(B)</b> and the POA <b>(C)</b>, gonadally intact males showed the highest aromatase mRNA expression, which was significantly different from all other groups; ** significant difference between intact males and other groups (p<0.01). In contrast, in the dorsal hippocampus <b>(D)</b> and cingulate cortex <b>(E)</b> aromatase mRNA levels did not differ among the groups.</p
    • …
    corecore