16 research outputs found

    Forward and Inverse Models of Electromagnetic Scattering from Layered Media with Rough Interfaces.

    Full text link
    This work addresses the problem of electromagnetic scattering from layered dielectric structures with rough boundaries and the associated inverse problem of retrieving the subsurface parameters of the structure using the scattered field. To this end, a forward scattering model based on the Small Perturbation Method (SPM) is developed to calculate the first-order spectral-domain bistatic scattering coefficients of a two-layer rough surface structure. SPM requires the boundaries to be slightly rough compared to the wavelength, but to understand the range of applicability of this method in scattering from two-layer rough surfaces, its region of validity is investigated by comparing its output with that of a first principle solver that does not impose roughness restrictions. The Method of Moments (MoM) is used for this purpose. Finally, for retrieval of the model parameters of the layered structure using scattered field, an inversion scheme based on the Simulated Annealing method is investigated and a strategy is proposed to address convergence to local minimum.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/64752/1/alirezat_1.pd

    Advancing NASA’s AirMOSS P-Band Radar Root Zone Soil Moisture Retrieval Algorithm via Incorporation of Richards’ Equation

    Get PDF
    P-band radar remote sensing applied during the Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) mission has shown great potential for estimation of root zone soil moisture. When retrieving the soil moisture profile (SMP) from P-band radar observations, a mathematical function describing the vertical moisture distribution is required. Because only a limited number of observations are available, the number of free parameters of the mathematical model must not exceed the number of observed data. For this reason, an empirical quadratic function (second order polynomial) is currently applied in the AirMOSS inversion algorithm to retrieve the SMP. The three free parameters of the polynomial are retrieved for each AirMOSS pixel using three backscatter observations (i.e., one frequency at three polarizations of Horizontal-Horizontal, Vertical-Vertical and Horizontal-Vertical). In this paper, a more realistic, physically-based SMP model containing three free parameters is derived, based on a solution to Richards’ equation for unsaturated flow in soils. Evaluation of the new SMP model based on both numerical simulations and measured data revealed that it exhibits greater flexibility for fitting measured and simulated SMPs than the currently applied polynomial. It is also demonstrated that the new SMP model can be reduced to a second order polynomial at the expense of fitting accuracy

    Remote Sensing of Complex Permittivity and Penetration Depth of Soils Using P-Band SAR Polarimetry

    Get PDF
    A P-band SAR moisture estimation method is introduced for complex soil permittivity and penetration depth estimation using fully polarimetric P-band SAR signals. This method combines eigen- and model-based decomposition techniques for separation of the total backscattering signal into three scattering components (soil, dihedral, and volume). The incorporation of a soil scattering model allows for the first time the estimation of complex soil permittivity and permittivity-based penetration depth. The proposed method needs no prior assumptions on land cover characteristics and is applicable to a variety of vegetation types. The technique is demonstrated for airborne P-band SAR measurements acquired during the AirMOSS campaign (2012–2015). The estimated complex permittivity agrees well with climate and soil conditions at different monitoring sites. Based on frequency and permittivity, P-band penetration depths vary from 5 cm to 35 cm. This value range is in accordance with previous studies in the literature. Comparison of the results is challenging due to the sparsity of vertical soil in situ sampling. It was found that the disagreement between in situ measurements and SAR-based estimates originates from the discrepancy between the in situ measuring depth of the top-soil layer (0–5 cm) and the median penetration depth of the P-band waves (24.5–27 cm)

    Soil moisture profile estimation by combining P-band SAR polarimetry with hydrological and multi-layer scattering models

    Get PDF
    An approach for estimating vertically continuous soil moisture profiles under varying vegetation covers by combining remote sensing with soil (hydrological) modeling is proposed. The approach uses decomposed soil scattering components, after the removal of the vegetation scattering components from fully polarimetric P-band SAR observations. By comparing these with hydrological simulations, soil moisture profiles from the soil surface until a soil depth of 30 cm (assumed average P-band penetration depth) are estimated. Here, the hydrological model HYDRUS-1D, as a representative of any soil hydrological model, is employed to simulate an ensemble of realistic soil moisture profiles, which are used for a multi-layer soil scattering model to obtain forward modeled soil scattering components. Compared to the decomposed SAR-based soil scattering components, the most appropriate soil moisture profile from the ensemble is estimated. The approach is able to provide physically (hydraulic) more meaningful soil moisture profile shapes than currently existing profile estimation approaches, like polynomial fitting to few measurements at discrete soil depths. Results are presented across eight in situ measuring stations in the U.S. within six test sites of NASA's Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) mission between 2013 and 2015. In-depth analyzes and validations with in situ measured soil moisture information demonstrate the feasibility of the proposed approach. Overall, estimated soil moisture profiles at the different sites match the varying local climate, vegetation cover, and soil conditions. Coefficients of determination between estimated and in situ measured soil moisture values vary between 0.48 and 0.92, while unbiased errors range from 1.4 vol% to 3.7 vol%, and Fréchet distances (analyzing the similarity of profile shapes) vary between 0.1 and 0.2 [−].</p

    Complex Permittivity and Penetration Depth Estimation from Airborne P-Band SAR Data Applying a Hybrid Decomposition Method

    No full text
    A method for estimating complex soil permittivity (or moisture) and penetration depth based on SAR decomposition is presented. By combining model- and eigenbased decomposition techniques in a non-iterative way, SAR observations are separated into single scattering components (soil, vegetation). The proposed method incorporates a multilayer rough surface scattering model to simulate the soil scattering contribution. Hence, permittivity and penetration depth can be estimated from SAR observations. Results are presented for the AirMOSS campaign within the MOISST site, OK, USA. As first results, a median value of 15.7 ± 2.03 for the complex permittivity was estimated from the 19 Pband data takes at the SoilSCAPE in situ station in Canton, OK, USA. Overall, the retrieval results for the real part of the complex permittivity are similar to in situ values at 30 cm soil depth, with differences in respective median values of ~2.7. Finally, the median of penetration depths at the Canton site is 21.5 cm

    The Potential of Low-Frequency Polarimetric SAR Data for Soil Carbon Content Retrieval in the Arctic

    No full text
    Accurate soil carbon data are important for understanding the permafrost response and potential carbon release to future climate change. However, there is a large discrepancy in current soil organic carbon (SOC) estimates in the Arctic, where sparse measurements are unable to capture SOC complexity over the vast and remote region. Polarimetric Synthetic Aperture Radar (SAR) data are sensitive to roughness and moisture conditions of soil and vegetation, and may provide useful information on surface and profile SOC properties ( Yi et al., 2021 , 2022 ). The NASA Arctic Boreal Vulnerability Experiment (ABoVE) airborne campaign acquired an abundance of full-polarimetric P- and L-band SAR data across Alaska and western Canada ( Miller et al., 2019 ), which provides opportunities to test new remote sensing applications. The main objective of this study is to investigate the potential of low-frequency polarimetric SAR data for regional SOC retrieval in the Arctic through data analysis and modeling. We chose the Alaska North Slope as our study area due to more in-situ data available in this area
    corecore