
remote sensing  

Article

Advancing NASA’s AirMOSS P-Band Radar Root
Zone Soil Moisture Retrieval Algorithm via
Incorporation of Richards’ Equation

Morteza Sadeghi 1,*, Alireza Tabatabaeenejad 2, Markus Tuller 3, Mahta Moghaddam 2 and
Scott B. Jones 1

1 Department of Plants, Soils and Climate, Utah State University, Logan, UT 84322, USA; scott.jones@usu.edu
2 Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles,

CA 90089, USA; alirezat@usc.edu (A.T.); mahta@usc.edu (M.M.)
3 Department of Soil, Water and Environmental Science, The University of Arizona, Tucson, AZ 85721, USA;

mtuller@cals.arizona.edu
* Correspondence: morteza.sadeghi@usu.edu; Tel.: +1-435-554-5369

Academic Editors: José A.M. Demattê, Nicolas Baghdadi and Prasad S. Thenkabail
Received: 30 August 2016; Accepted: 21 December 2016; Published: 28 December 2016

Abstract: P-band radar remote sensing applied during the Airborne Microwave Observatory of
Subcanopy and Subsurface (AirMOSS) mission has shown great potential for estimation of root
zone soil moisture. When retrieving the soil moisture profile (SMP) from P-band radar observations,
a mathematical function describing the vertical moisture distribution is required. Because only
a limited number of observations are available, the number of free parameters of the mathematical
model must not exceed the number of observed data. For this reason, an empirical quadratic function
(second order polynomial) is currently applied in the AirMOSS inversion algorithm to retrieve
the SMP. The three free parameters of the polynomial are retrieved for each AirMOSS pixel using
three backscatter observations (i.e., one frequency at three polarizations of Horizontal-Horizontal,
Vertical-Vertical and Horizontal-Vertical). In this paper, a more realistic, physically-based SMP model
containing three free parameters is derived, based on a solution to Richards’ equation for unsaturated
flow in soils. Evaluation of the new SMP model based on both numerical simulations and measured
data revealed that it exhibits greater flexibility for fitting measured and simulated SMPs than the
currently applied polynomial. It is also demonstrated that the new SMP model can be reduced to
a second order polynomial at the expense of fitting accuracy.

Keywords: Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS); radar
backscatter; P-band remote sensing; root zone; soil moisture profile; Richards’ equation

1. Introduction

Soil moisture is a key state variable that controls all major processes and feedback loops within
the climate system. Soil moisture impacts the water and energy cycles and the exchange of trace
gases, including carbon dioxide, between land and atmosphere [1]. A number of comprehensive
review articles published in recent years [1–5] highlight the crucial importance of spatial and
temporal soil moisture information at various scales for virtually all hydrologic, atmospheric, and
ecological processes.

Remote sensing (RS) has demonstrated great potential for large-scale monitoring of soil moisture
utilizing various frequency bands of the electromagnetic spectrum such as shortwave infrared [6,7],
thermal infrared [8–10], or microwave radiation [11,12]. Microwave RS techniques have shown greater
promise for global monitoring of soil moisture variations [13], because in contrast to thermal and
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optical RS, they are not impacted by clouds and darkness and there is significant penetration into the
soil and overlying vegetation at lower microwave frequencies [11].

Most of the existing microwave sensors operate within the X-band (e.g., AMSR-E; 10.65 and
18.7 GHz), C-band (e.g., AMSR-E; 6.9 GHz, ASCAT; 5.3 GHz), or L-band (e.g., SMOS and SMAP;
1.4 GHz), which only sense surface soil moisture (0–5 cm depth). However, the application of the low
frequency P-band (0.42–0.44 GHz) in course of the National Aeronautics and Space Administration
(NASA) Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) mission provides
an unprecedented sensing depth of about 45 cm to directly retrieve root zone soil moisture under
vegetation canopies [14].

The AirMOSS mission seeks to improve the estimates of the North American net ecosystem
exchange via flying a P-band synthetic aperture radar (SAR) over nine regions representative of the
major North American biomes. The SAR is able to penetrate vegetation and underlying soil to provide
high-resolution maps of soil moisture profiles (SMPs). Past AirMOSS flights have covered areas of
approximately 100 × 25 km2 with FLUXNET tower sites in regions ranging from boreal forests in
Saskatchewan, Canada, to tropical forests in La Selva, Costa Rica. The radar snapshots are used
to generate estimates of the SMPs via inversion of scattering models of vegetation overlying soils
with variable soil moisture distributions. The retrieved SMPs are in turn assimilated or otherwise
applied by hydrologists to estimate land surface model hydrological parameters over the nine biomes,
generating a high-resolution time record of root zone soil moisture evolution. These hydrological
parameters are ultimately integrated with an ecosystem demography model to predict the respiration
and photosynthesis carbon fluxes [14].

When retrieving the soil moisture profile from P-band radar, a mathematical function describing
the continuous SMP is required. Because inevitably only a limited number of observations is available,
the number of free parameters of the mathematical model must not exceed the number of observed data
to ensure unambiguous retrievals. For example, in the current AirMOSS retrieval algorithm a second
order polynomial (hereinafter referred to as polynomial) with three free parameters is presumed and
parameterized based on three backscatter observations provided by AirMOSS (i.e., one frequency at
three polarizations of Horizontal-Horizontal, Vertical-Vertical and Horizontal-Vertical) [14]. To improve
the AirMOSS SMP retrieval, we aimed to derive a more realistic and physically-based SMP model via
solving Richards’ equation (RE) for unsaturated flow in soils [15] in this study.

Due to the highly nonlinear nature of flow processes in unsaturated soils, analytical solutions to the
RE are commonly restricted to simple cases such as a linearized form of the RE [16–18] or steady-state
Darcian flow [19–22]. However, these simplified cases rarely meet realistic soil and environmental
conditions, where after wetting events (i.e., precipitation or irrigation) the most common flow scenario
encompasses drying due to evaporation of water from the soil surface and gravity-driven movement
of water to greater depths within the soil profile.

Existing analytical solutions to the RE for the abovementioned process are restricted to simplified
cases. For example, solutions introduced by Gardner [23], Novak [24], and Suleiman and Ritchie [25] were
obtained by reducing the RE to a diffusion-type partial differential equation neglecting gravity-driven
flow. Analytical solutions of Warrick [16] and Teng et al. [26] were obtained by linearization of the
RE based on the assumption of exponential saturation-pressure head and linear saturation-hydraulic
conductivity relationships, which is rarely met under natural conditions.

Warrick et al. [27] based on the analysis of Broadbridge and White [28] introduced to our best
knowledge the only analytical solution to the nonlinear RE for the case of evaporation and concurrent
drainage. However, this solution (Equation (26) in [27]) is not applicable for AirMOSS SMP retrieval
because it consists of more than three free parameters (considering time as a constant in the solution to
fit snapshot observations at any given time).

Based on the hypothesis that a solution to RE with three free parameters is feasible, the objective
of this study was to derive a physically-based alternative to the second-order polynomial SMP to
advance the AirMOSS root zone soil moisture retrieval algorithm, adding physical significance to the



Remote Sens. 2017, 9, 17 3 of 18

model. In the following, a simple closed-form analytical solution to the nonlinear RE containing three
free parameters is introduced. The solution is presented in a general form, without specifying distinct
initial and boundary conditions. However, it will be demonstrated that the solution better suits the
process of soil drying (i.e., concurrent evaporation and drainage). Theoretical aspects for derivation of
the new solution and its validation based on measured and numerically simulated data are presented
together with sample AirMOSS SMP retrievals with the modified inversion algorithm.

2. Mathematical Derivations

2.1. Richards’ Equation

The Richards’ equation (RE) [15] combines the Buckingham–Darcy law [29], q = K(∂h/∂z + 1), and
the continuity principle, ∂θ/∂t = −∂q/∂z (conservation of mass):

∂θ

∂t
=

∂

∂z

(
−K

∂h
∂z

− K
)

(1)

where q [LT−1] is the water flux density, θ [L3L−3] is the soil water content, h [L] is the pressure
head (absolute values are considered here for convenience), K [LT−1] is the unsaturated hydraulic
conductivity, t [T] is time, and z [L] is soil depth assumed positive downward from the soil surface.

In an unsaturated soil, h and K are functions of θ, which are assumed to be invariant for a given
soil, but may distinctly deviate for different soils. Various mathematical models exist for the soil
hydraulic h(θ) and K(θ) functions (e.g., [30–32]) that are commonly parameterized via least-square
fitting to measured h-θ and K-θ data for the soil of interest.

2.2. New Solution to Richards’ Equation

To obtain an analytical solution for Equation (1), the following soil hydraulic functions are
assumed [33,34]:

θ = θr + (θs − θr) exp
(
− h

PhcM

)
(2)

K = Ks

(
θ − θr

θs − θr

)P
(3)

where θs and θr are the saturated and residual volumetric water contents, respectively, Ks is the
saturated hydraulic conductivity, P is an empirical parameter related to the soil pore size distribution,
and hcM is the effective capillary drive introduced by Morel-Seytoux and Khanji [35]. As shown below
in Equation (31), P is related to the van Genuchten parameter m. Assuming P = 1, the RE is reduced to
a linearized form for which analytical solutions to various flow processes exist [16–18]. However, the
assumption P = 1 is rarely met under realistic conditions; most soils exhibit a P significantly larger
than 1 [33]. Thus, P is treated as a soil parameter in the following derivations, where the resulting
nonlinear RE is solved analytically. Note that the soil hydraulic parameters θs, θr, P, Ks, and hcM are
constant for a given soil and do not change with time. Therefore, they should be discerned from the
so-called “free parameters”, which vary temporally to fit the SMP at any given time.

For convenience, variables are reduced to the following dimensionless forms:

h∗ =
h

hcM
(4)

θ∗ =
θ − θr

θs − θr
(5)

K∗ =
K
Ks

(6)
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z∗ =
z

hcM
(7)

t∗ =
Kst

hcM(θs − θr)
(8)

Substituting Equation (4) to Equation (8) into Equation (1) yields a scaled form of the RE:

∂θ∗

∂t∗
=

∂

∂z∗

(
−K∗ ∂h∗

∂z∗
− K∗

)
(9)

with the following scaled soil hydraulic functions:

θ∗ = exp
(
−h∗

P

)
(10)

K∗ = θ∗
P

(11)

Combining Equations (9)–(11) yields the scaled RE rearranged based on K*:

∂K∗

∂t∗
= PK∗(1−1/P)

(
∂2K∗

∂z∗2 − ∂K∗

∂z∗

)
(12)

Assuming P >> 1 (i.e., 1 − 1/P ≈ 1) as is the case in many natural soils (see Table 1 in [33] as well
as Table 1 in this paper), Equation (12) can be approximated as:

∂K∗

∂t∗
= PK∗

(
∂2K∗

∂z∗2 − ∂K∗

∂z∗

)
(13)

To solve Equation (13), the method of separation of variables is applied:

K∗(z∗, t∗) = F(z∗)G(t∗) (14)

Combining Equations (13) and (14) yields:

1
PG2

dG
dt∗

=
d2F
dz∗2 − dF

dz∗
= µ = constant (15)

Thus, two ordinary differential equations are obtained:

d2F
dz∗2 − dF

dz∗
− µ = 0 (16)

dG
dt∗

− µPG2 = 0 (17)

Solutions to Equations (16) and (17) are:

F = −µz∗ + a1 exp(z∗) + a2 (18)

G =
1

−µPt∗ + a3
(19)

where a1, a2, and a3 are the integral constants. Combining Equations (10), (11), (14), (18) and (19), and
denoting the constants b1, b2, and b3, a simple closed-form solution is obtained:

K∗ = θ∗
P
= exp(−h∗) =

z∗ + b1 exp(z∗) + b2

Pt∗ + b3
(20)
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Because AirMOSS observations are temporally not continuous but rather provide snapshots
at specific times, time needs to be considered as a constant. This consideration, together with the
assumption that θr is negligibly small, allows transformation of Equation (20) to the final SMP solution:

θ = [c1z + c2 exp(z/hcM) + c3]
1/P (21)

where c1, c2, and c3 are the combined constants or the final free parameters of the RE-based SMP model.
Equation (21) has been obtained without specifying boundary and initial conditions. This,

however, should not imply that Equation (21) is applicable for all flow processes because the separation
of variables method used to solve the RE only holds for a limited set of boundary and initial conditions.
Equation (20) indicates that a given SMP at t = 0 will monotonically decrease with time. Therefore, it
is expected that the solution works better for the drying process. Fortunately, soil drying is the most
common flow process in nature that occurs after a wetting event (rainfall/irrigation) due to concurrent
surface evaporation and internal drainage.

It should be noted that because of the exponential/power form of Equation (21), the derived
SMP model is highly sensitive to variations of free model parameters. It can be analytically shown
that the sensitivity of θ with respect to c1, c2, and c3 (i.e., ∂θ/∂c1, ∂θ/∂c2, and ∂θ/∂c3) is proportional
to θ1−P that yields very large numbers for most cases. Therefore, small changes in c1, c2, and c3 can
lead to a significant change of the SMP shape. This means that direct derivation of c1, c2, and c3

through inversion is not as straightforward as proposed in [14], for example, to find the optimum
polynomial parameters. We resolve this problem by replacing the free model parameters (c1, c2, and c3)
with soil moisture values at three arbitrary depths, θ1(z1), θ2(z2), and θ3(z3). Thereby we capitalize on
both the physical significance of the free model parameters and the desirable sensitivity of the SMP,
Equation (21), to variations of θ1, θ2, and θ3. Assuming that Equation (21) coincides with these three
points, then c1, c2, and c3 can be calculated directly from θ1, θ2, and θ3 as follows:

c1 =
θP

3 − θP
1 − A

(
θP

2 − θP
1
)

z3 − z1 − A(z2 − z1)
(22)

c2 =
θP

2 − θP
1 − c1(z2 − z1)

exp(z2/hcM)− exp(z1/hcM)
(23)

c3 = θP
1 − c1z1 − c2 exp(z1/hcM) (24)

where

A =
[exp(z3/hcM)− exp(z1/hcM)]

[exp(z2/hcM)− exp(z1/hcM)]
(25)

2.3. Second Order Polynomial Approximation

As stated earlier, the parameter P is significantly larger than 1 for most soils. In the following it is
demonstrated that the second order polynomial SMP can be derived from the new solution if P = 1,
which highlights the limitation of the polynomial SMP when compared to the new solution. At the
expense of fitting flexibility, Equation (21) can be simplified with the assumption that P = 1:

θ = c1z + c2 exp(z/hcM) + c3 (26)

A Taylor series expansion yields:

exp
(

z
hcM

)
= 1 +

z
hcM

+
1
2!

(
z

hcM

)2
+

1
3!

(
z

hcM

)3
+ ... (27)



Remote Sens. 2017, 9, 17 6 of 18

For hcM larger than the maximum depth of interest (i.e., z/hcM < 1), all the terms with orders
higher than 2 can be neglected. Hence Equation (26) can be reduced to the second order polynomial
presumed in [14]:

θ = c1z + c2

[
1 +

z
hcM

+
1
2

(
z

hcM

)2
]
+ c3 = az2 + bz + c (28)

Equation (28) implicates that the second order polynomial introduced in [14] based on empirical
findings can be approximated based on the physics of unsaturated flow in soils. The accuracy of this
approximation is dependent on the SMP shape, which is discussed in the following section.

3. Validation of the Proposed SMP Model

3.1. Numerical Data

To explore the flexibility of Equation (21) to match realistic SMPs, the original RE was solved
numerically with the HYDRUS-1D model [36]. HYDRUS-1D is a software package for simulation of
water, heat and solute movement in one-dimensional variably saturated porous media. The governing
flow and transport equations in HYDRUS are solved numerically with a Galerkin-type linear finite
element scheme. In this study HYDRUS was applied to simulate coupled liquid water and water
vapor flows to account for the soil moisture vaporization plane recession during the second stage of
the drying process [37].

The most common unsaturated flow scenario in nature, evaporation of water from the soil surface,
was simulated concurrently with downward water redistribution along the soil profile after a wetting
event (rainfall/irrigation). Therefore, free drainage at the bottom boundary (z = 50 cm in the presented
simulations) and atmospheric conditions at the top boundary with a potential evaporation rate of
0.5 cm day−1 and atmospheric pressure head of −1000 m were assumed. To simulate the drying
process after a wetting event, the initial soil profile was assumed to be saturated from z = 0 to 30 cm and
air-dry from z = 30 to 50 cm. Hydraulic properties of three vastly different soil textures including sand,
loam and clay were used to parameterize the HYDRUS simulations. The van Genuchten (VG) [30] soil
hydraulic functions were applied with HYDRUS default soil hydraulic parameters listed in Table 1:

Se = [1 + (αh)n]
−m (29)

K = KsS0.5
e

[
1 −

(
1 − S1/m

e

)m]2
(30)

where α, n, and m are VG model parameters assuming m = 1 − 1/n.
Figure 1 (top row) depicts the HYDRUS simulation results for each of the three textures at three

different drying times as well as the best fits of Equation (21). To find the optimum values of P
and hcM for each soil (presented in each plot), first an initial guess was made. Then three arbitrary
data points, θ1(z1), θ2(z2), and θ3(z3), from the Hydrus simulations were used to calculate c1, c2,
and c3 with Equation (22) to Equation (25). Finally, P and hcM were optimized to visually best fit the
simulation results.

Figure 1 (top row) illustrates how well the new SMP solution, Equation (21), fits numerical data.
It is apparent that all assumptions that were required to derive the analytical SMP solution (e.g., soil
hydraulic functions of Equations (2) and (3)) are suitable when Equation (21) is employed as a fitting
curve rather than a predictive tool (e.g., common RE solutions to simulate SMP at different times along
a specific initial/boundary value problem).

It should be noted that because the diffusivity function (D = Kdh/dθ) applied for the analytical
solution yields zero at zero saturation, soil moisture vanishes at a finite depth termed “wetting front”
at which the SMP is characterized by a “shock-type” front [38,39]. This means that the solution is
only applicable for the dynamic zone of the profile (i.e., above the wetting front), but not for the dry
region below the wetting front. Therefore, data below the wetting front were not considered for fitting.



Remote Sens. 2017, 9, 17 7 of 18

Additionally, it was assumed that the soil water content below the wetting front is the same as that of
the wetting front. This assumption is similarly employed in the current AirMOSS algorithm, where
soil moisture is assumed to be constant below a certain depth.Remote Sens. 2017, 9, 17 7 of 18 
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Figure 1. The best fit of Equation (21) (solid lines) to HYDRUS-1D simulation results (circles) for 
simultaneous evaporation and drainage in three different soils. The soil parameters in Equation (21), 
P and hcM, were treated as fitting parameters (top row), taken from Table 1 (middle row), or were set 
to P = 1 and hcM >> 50 cm leading to the second order polynomial (bottom row). Data below the wetting 
front were not considered for least square fitting. The fitting accuracy is quantified with the mean 
absolute error, ε (cm3 cm−3). 
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Figure 1. The best fit of Equation (21) (solid lines) to HYDRUS-1D simulation results (circles) for
simultaneous evaporation and drainage in three different soils. The soil parameters in Equation (21),
P and hcM, were treated as fitting parameters (top row), taken from Table 1 (middle row), or were set to
P = 1 and hcM >> 50 cm leading to the second order polynomial (bottom row). Data below the wetting
front were not considered for least square fitting. The fitting accuracy is quantified with the mean
absolute error, ε (cm3 cm−3).

The SMP model, Equation (21), includes two soil parameters and three free parameters. Therefore,
for application in the AirMOSS algorithm that only allows three free parameters, the soil parameters
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should be known. Determination of the soil hydraulic parameters (P and hcM) requires measurement
of the soil hydraulic functions, which is impractical for large-scale applications. To avoid this
complication, the following approximations for P and hcM from VG parameters is proposed:

P = 0.5 + 2(ln 0.5)−1 ln
[
1 −

(
1 − 0.51/m

)m]
(31)

hcM = (αP)−1[exp(1/m)− 1]1/n (32)

Equations (31) and (32) were derived from equivalence of Equations (2) and (3) with Equations (29)
and (30) such that they yield the same θ* at h = P × hcM and the same K at θ* = 0.5. These equations
are introduced here because average VG parameters for various textures are well documented
in the literature [40] (Table 1) and they can be approximated with pedotransfer functions from
easy-to-measure textural properties (sand, silt and clay percentages) [41]. The calculated parameters P
and hcM based on Equations (31) and (32) with VG parameters provided in [40] for the 12 soil textural
classes of the United States Department of Agriculture (USDA) classification scheme are listed in
Table 1.

Fitting of Equation (21) with values from Table 1 is also depicted in Figure 1 (middle row).
It is evident that these values generally lead to a reasonable fit of Equation (21) to numerical data.
Nonetheless, the parameters for the clay soil seem to be much higher than the best fitting parameters
presented earlier. This is due to the fact that Equations (2) and (3) substantially deviate from the VG
functions for clayey soils. Hence, for the two last soils of Table 1 (silty clay and clay) we recommend
employing P = 15.9 and hcM = 350 cm (i.e., the optimum values obtained from HYDRUS-1D simulations
shown in Figure 1) instead of the values listed in Table 1.

Table 1. Average van Genuchten model parameters for the 12 soil textural classes of the United States
Department of Agriculture classification scheme [40] as well as parameters for Equations (2) and (3)
calculated with Equations (31) and (32).

Soil Texture θr θs α (cm–1) n Ks (cm/Day) P hcM (cm)

Sand 0.045 0.43 0.145 2.68 712.80 4.83 2.38
Loamy sand 0.057 0.41 0.124 2.28 350.20 5.52 2.94
Sandy loam 0.065 0.41 0.075 1.89 106.10 6.73 5.70

Loam 0.078 0.43 0.036 1.56 24.96 8.89 17.90
Silt 0.034 0.46 0.016 1.37 6.00 11.60 78.94

Silt loam 0.067 0.45 0.020 1.41 10.80 10.84 51.64
Sandy clay loam 0.100 0.39 0.059 1.48 31.44 9.79 13.46

Clay loam 0.095 0.41 0.019 1.31 6.24 13.05 100.39
Silty clay loam 0.089 0.43 0.010 1.23 1.68 16.00 481.18

Sandy clay 0.100 0.38 0.027 1.23 2.88 16.00 178.22
Silty clay 0.070 0.36 0.005 1.09 0.48 31.92 4.19 × 105

Clay 0.068 0.38 0.008 1.09 4.80 31.92 2.62 × 105

Figure 1 (bottom row) also depicts the polynomial, Equation (28), fitted to the numerical data.
It is apparent that the polynomial does not capture numerical data at earlier stages of evaporation
well, but it performs reasonably well at later times when the SMP is drier. The primary reason for this
loss of fitting accuracy is due to the application of P = 1 and hcM >> 50 cm. Based on the values shown
in Table 1, it is unlikely to find a natural soil which meets this condition, since P = 1 corresponds to
an extremely coarse-textured soil and large hcM corresponds to a fine-textured soil. This mismatch
highlights the advantage of applying the general model, Equation (21), rather than its reduced form,
Equation (28), in the AirMOSS algorithm.

The free drainage bottom boundary condition considered in Figure 1 is common in arid and
semi-arid environments. In more humid climates, the bottom boundary condition may be different
due to the presence of a shallow water table. To evaluate how the model works under such condition,
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an evaporation process similar to the case presented in Figure 1, but with a shallow water table at
z = 1 m was simulated with HYDRUS-1D. A uniformly saturated profile down to the water table was
considered at t = 0. The results of this analysis that are depicted in Figure 2 indicate that the obtained
SMP in the presence of a shallow water table is generally analogous to the late drying times in Figure 1,
but distributed over a wider moisture range in some cases. From this analysis it can be concluded that
the new SMP model exhibits sufficient flexibility to deal with varying water table depths that might
influence the root zone moisture distribution.
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Another common flow scenario is water infiltration that occurs after a wetting event (rainfall or
irrigation). Since the infiltration process commonly ceases a few hours after the wetting event, the
SMPs established due to infiltration are not likely to be observed with RS techniques. Nonetheless,
to evaluate the applicability of Equation (21) for soil wetting, a constant-flux (= 1 cm/h) of water
infiltration into an initially air-dry loam soil was also simulated with HYDRUS-1D. Figure 3 depicts
HYDRUS simulation results together with the best fit of Equation (21).
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It is evident that a reasonably good fit was achieved with the same soil parameters, P and hcM, as
applied for the evaporation process shown in Figure 1 (top row). The small discrepancies are due to
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the nature of the analytical solution. According to Equation (20), an initial soil moisture profile dries
with time if b1, b2 and b3 remain constant. This means that the constants of Equation (20) vary with
time in the SMPs depicted in Figure 3. This time-dependency of constants contradicts the underlying
assumption of the separation of variables method. Hence, while application of Equation (21) for
a wetting process is possible in practice, it is theoretically not justifiable.

3.2. Measured Data

We also evaluated the proposed SMP model with real measurements from the Soil Climate
Analysis Network (SCAN) [42]. As a first test case, SCAN site number 2078 in Madison, Alabama,
which was also used in Mishra et al. [43] was considered. Mishra et al. [43] found the SCAN data to
provide ideal test cases for evaluating fitting capabilities of their proposed SMP model. They indicated
that two general shapes of soil moisture profiles are commonly observed in course of the drying
process: (i) the “dynamic case”, which is analogous to earlier times of drying shown in Figure 1; and
(ii) the “dry case”, which is similar to the late drying times in Figure 1.

Figure 4 compares the fitting capabilities of Equation (21) (new solution) and Equation (28)
(polynomial) to measured soil moisture data exhibiting the dynamic case. Since the soil texture of the
SCAN site is predominantly silty clay and clay, P = 15.9 and hcM = 350 cm were used for Equation (21).
For both Equations (21) and (28), θ values measured at 5, 20 and 50 cm depths were applied for
direct calculation of the three free model parameters. It was assumed that below the dynamic zone
the water content is uniform and equal to that of the wetting front. It is well documented that at
later evaporation stages, a dry zone develops close to the soil surface and the so-called drying front
(or vaporization plane) recedes below the surface. In this case, the Buckingham–Darcy law is not
applicable for modeling soil water content above the drying front without accounting for the vapor
flow contribution, because the pressure head gradient approaches infinity at the drying front [44].
Therefore, it was assumed for Equation (21) that soil water content above the drying front (i.e., where
Equation (21) intersects θ = 0) is zero.
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Figure 4. Comparison of Equations (21) (new solution) and Equation (28) (second order polynomial) 
with measured soil moisture data from Soil Climate Analysis Network (SCAN) site number 2078 
(Madison, Alabama) at Julian days (JD) 31 and 40, 2013. The clay soil parameters, P = 15.9 and hcM = 
350 cm, were used in Equation (21). PWP: permanent wilting point; SMP: soil moisture profile. 

With these assumptions, both models yielded reasonably good fits (Figure 4). When compared 
to Equation (21), the polynomial underestimates water content at intermediate depths. Conversely, 
the polynomial always shows a higher surface water content than Equation (21). It is obvious that 

Figure 4. Comparison of Equations (21) (new solution) and Equation (28) (second order polynomial)
with measured soil moisture data from Soil Climate Analysis Network (SCAN) site number 2078
(Madison, Alabama) at Julian days (JD) 31 and 40, 2013. The clay soil parameters, P = 15.9 and
hcM = 350 cm, were used in Equation (21). PWP: permanent wilting point; SMP: soil moisture profile.

With these assumptions, both models yielded reasonably good fits (Figure 4). When compared
to Equation (21), the polynomial underestimates water content at intermediate depths. Conversely,
the polynomial always shows a higher surface water content than Equation (21). It is obvious that
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there is uncertainty about the surface water content (i.e., θ exactly at z = 0) since there is no surface
measurement available (Note: θ at 5 cm was used as one of the fitting points). In any case, the RE yields
low values of surface θ in clay soils even at early stages of evaporation (see HYDRUS-1D simulations
in Figure 1).

The comparisons for the dry case are shown in Figure 5, where θ values measured at 5, 20 and
100 cm depths were applied for direct calculation of the three free parameters of Equations (21) and (28).
It is evident that the polynomial when compared with the RE solution overestimates water content at
most depths, especially within the dry zone near the soil surface. Equation (21) predicts formation of
a dry layer down to about 3–4 cm. This prediction is plausible, because the water content of the entire
profile is close to the permanent wilting point (PWP; i.e., water content at h = −150 m).
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Figure 5. Comparison of Equations (21), new solution, and Equation (28), second order polynomial, 
with measured soil moisture data from SCAN site number 2078 (Madison, Alabama) at Julian days 
(JD) 87 and 96, 2012. The clay soil parameters, P = 15.9 and hcM = 350 cm, were used in Equation (21).  

The wetting front locations in Figures 1–5 were determined based on simulated and measured 
moisture data. However, for AirMOSS applications where in situ moisture measurements are not 
available for all pixels, determination of the wetting front location would be a challenging task. The 
AirMOSS radar senses the soil profile down to a depth of about 45 cm, where it may be assumed that 
no distinct wetting front exists. This assumption simplifies application of Equation (21) in the 
AirMOSS retrieval algorithm. In order to test the validity of this assumption, soil moisture data from 
SCAN site number 2026 in the Walnut Gulch watershed in Arizona were investigated. This site 
located within a USDA Agricultural Research Service (ARS) experimental watershed was selected 
because it was among the sites applied for AirMOSS evaluation in Tabatabaeenejad et al. [14] and it 
was also a validation site for other satellite missions (e.g., SMEX04, SMAPVEX15) [45].  

To evaluate to what extent Equation (21) can capture SMP seasonal dynamics, biweekly data 
over one year were used for this analysis. The soil profile at this site is not uniform, consisting of 
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with measured soil moisture data from SCAN site number 2078 (Madison, Alabama) at Julian days (JD)
87 and 96, 2012. The clay soil parameters, P = 15.9 and hcM = 350 cm, were used in Equation (21).

The wetting front locations in Figures 1–5 were determined based on simulated and measured
moisture data. However, for AirMOSS applications where in situ moisture measurements are not
available for all pixels, determination of the wetting front location would be a challenging task.
The AirMOSS radar senses the soil profile down to a depth of about 45 cm, where it may be assumed
that no distinct wetting front exists. This assumption simplifies application of Equation (21) in the
AirMOSS retrieval algorithm. In order to test the validity of this assumption, soil moisture data from
SCAN site number 2026 in the Walnut Gulch watershed in Arizona were investigated. This site located
within a USDA Agricultural Research Service (ARS) experimental watershed was selected because it
was among the sites applied for AirMOSS evaluation in Tabatabaeenejad et al. [14] and it was also
a validation site for other satellite missions (e.g., SMEX04, SMAPVEX15) [45].

To evaluate to what extent Equation (21) can capture SMP seasonal dynamics, biweekly data
over one year were used for this analysis. The soil profile at this site is not uniform, consisting
of various textures (loam, loamy sand, sandy loam) down to a depth of 1 m. Nonetheless, we
evaluated Equation (21) assuming a uniform profile by applying the loam soil parameters, P = 6.6 and
hcM = 87 cm. Equation (21) was visually fitted to measured data via varying θ1(z1), θ2(z2), and θ3(z3) in
Equations (22)–(24).

The results depicted in Figure 6 verify that the wetting front is rarely located within the top 45 cm
of the soil profile; hence, Equation (21) can be continuously used in the AirMOSS retrieval algorithm
without truncation. Figure 6 also indicates that Equation (21) is able to adequately capture seasonal



Remote Sens. 2017, 9, 17 12 of 18

SMP dynamics, even with roughly approximated soil parameters for the heterogeneous soil profile.
The estimated profiles could certainly be different from reality due to the lack of observations at the
surface (z = 0) or missing information about the exact location of the wetting front. Nonetheless, the
estimated dynamics are consistent with common observations (e.g., Figure 1) showing a similar pattern
for damping the wetted zone formed after a wetting event (e.g., at Julian days, JD, of 32 and 214) over
time. It is worth mentioning that the observation gaps can be potentially closed with a hydrological
model calibrated with in situ soil moisture data, as for example demonstrated in Coopersmith et al. [46]
for 160 SCAN sites distributed throughout the US.
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number 2026 (Walnut Gulch, Arizona) at various dates during 2010. The loam soil parameters, P = 6.6
and hcM = 87 cm, were used for fitting Equation (21). The fitting accuracy is quantified with the mean
absolute error, ε (cm3 cm−3).

4. AirMOSS Retrieval Algorithm

4.1. Background

To model the scattering of electromagnetic waves from a forested scene, AirMOSS used a discrete
radar scattering model assuming a single-species forest with horizontal homogeneity within a radar
pixel while allowing vertical heterogeneity by introducing a trunk layer and a canopy layer [47,48].
The trunk layer is represented by nearly vertical dielectric cylinders. The canopy layer contains
randomly distributed large and small dielectric cylinders representing large and small branches.
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The canopy layer also contains leaves, which are randomly but uniformly distributed in the layer.
Leaves are represented by disks or cylinders depending on the type of the forest (deciduous or
coniferous). According to Equation (1) of Tabatabaeenejad et al. [14], the radar model calculates the
total backscattered power as the sum of the powers from several contributing scatters; (1) scattering
from crown layer; (2) scattering from trunks; (3) double-bounce scattering between crown layer and
ground; (4) double-bounce scattering between trunks and ground; and (5) backscattering from the
ground. The ground is modeled as a layer of homogenous soil. Figure 5 in Tabatabaeenejad et al. [14]
shows the forest geometry. Interested readers are referred to Tabatabaeenejad et al. [14] for more details
of the forward model.

In the AirMOSS retrieval algorithm, the SMP is assumed to be the only unknown, and all other
parameters (i.e., soil texture, vegetation parameters, and structural information) are considered as
known [14]. The SMP is retrieved from estimation of the free parameters a, b and c in Equation (28).
A “simulated annealing” algorithm based on the work of Corana et al. [49] is used to minimize
a cost function that is based on the difference between measured and calculated backscattering
coefficients. Simulated annealing is a powerful global optimization technique that is capable of finding
the global minimum hidden among many local minima and is insensitive to the initial guess of the free
parameters [14]. At each iteration of a, b, and c in the inversion algorithm, soil moisture is calculated at
all depths with Equation (28). Then the dielectric constant at each soil depth is calculated as a function
of its moisture content, and finally the backscattering coefficient is calculated for each set of a, b
and c coefficients. The optimum parameter set that minimizes the difference between measured and
calculated backscattering coefficients is selected to yield the retrieved SMP from Equation (28).

The P-band retrieval algorithm of AirMOSS currently uses only the Horizontal-Horizontal and
Vertical-Vertical channels due to calibration inaccuracy of the Horizontal-Vertical channel. Therefore,
the corresponding inverse problem is ill-posed as three free parameters are retrieved with only two data
points. Some regularization is thus necessary to overcome the effect of the ill-posedness. The method
applied by Tabatabaeenejad et al. [14] is based on defining upper and lower bounds for each free
parameter according to available in situ soil moisture data at each AirMOSS site. Considering the
polynomial assumption, in situ measured soil moisture profiles at each site are fitted with a quadratic
function and the free parameters are observed throughout the year. An upper and lower bound is
empirically selected for each flight date based on the behavior of the free parameters within the time
period encompassing the flight date. In addition to mathematical inaccuracies in the forward and
inverse models, the physics of the problem (i.e., penetration depth of the electromagnetic waves) also
imposes a limitation on retrieval accuracy. AirMOSS has assumed a validation depth of up to 45 cm
in its retrieval algorithm. This depth makes the soil homogeneity assumption (underlying the new
solution) valid should the presented new RE solution be used for similar future retrievals [14].

4.2. Considerations Regarding the New Model Application

When employing the new solution, Equation (21), in the AirMOSS algorithm, θ1, θ2 and θ3 at
three arbitrary depths (z1, z2 and z3) are optimized instead of a, b and c. Therefore, the problem of
finding the upper and lower bounds is more straightforward because of the physical meaning of θ1, θ2

and θ3 from which free parameters of Equation (21) can be directly calculated with Equations (22)–(24).
As discussed earlier, Equation (21) does not hold for any general initial and boundary conditions.

Therefore, it may fail to fit some special SMPs occurring in nature. To better understand this point,
three most likely arrangements of θ1, θ2 and θ3 shown in Figure 7 are discussed below.

Case A is similar to early drying times for which θ2 > θ1 and θ3. Equation (21) is always valid
for this case. Case B is similar to later drying times for which θ3 > θ2 > θ1. Equation (21) is valid
for this case, unless θ3 is larger than a critical value θc. The critical value can be approximated with
Equation (33) that ensures validity of Equation (21) in most cases:

θc ≈
[
θP

1 − A
(

θP
2 − θP

1

)]1/P
(33)
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The constraint of θ3 < θc is necessary for inversion from a mathematical point of view, although
the condition θ3 > θc is rarely observed in natural settings. Therefore, the new solution can be easily
applied to the profiles of cases A and B. These two cases can be merged into a single case when the
two constraints of θ1 < θ2 and θ3 < θc are satisfied.

Case C for which θ2 < θ1 and θ3, however, cannot be predicted with Equation (21), as θ is undefined
within part of the profile where c1z + c2 exp (z/hcM) + c3 is negative. For such a case, it is suggested to
release the two constraints for cases A and B and rather assume P = 1 in order to replace Equation (21)
with Equation (26), which is approximately the same as the polynomial, Equation (28), as indicated in
Figure 7.
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4.3. Preliminary Inversion Results

As a preliminary test of the new solution, we present sample inversion results from two AirMOSS
flights; one flight over the Metolius site in Oregon on 21 August 2015 and one over the Boreal Ecosystem
Research and Monitoring Site (BERMS) in Saskatchewan, Canada, on 28 September 2015 (for detailed
information about AirMOSS flights, readers are referred to [50]). We observed that the behavior of
one of the installed probes at each site could be categorized as case A or B for at least a 50-day period
encompassing the flight dates. The AirMOSS observations for each site consisted of several hundred
thousand pixels. However, in this preliminary analysis, we only inverted one pixel for each site for
which in situ soil moisture measurements were available. Thus “Metolius pixel” and “BERMS pixel”
in the following refer to the one inverted pixel at the respective sites.

As mentioned earlier, soil texture is considered as known information in the AirMOSS retrieval
algorithm. Tabatabaeenejad et al. [14] used the Soil Survey Geographic (SSURGO) database to assign
soil texture to each pixel. Hence, the additional soil parameters included in the new model, P and
hcM, did not require extra information as they were directly estimated from soil texture (Table 1).
The Metolius pixel exhibits a loamy sand soil with P = 5.52 and hcM = 2.94 cm, and the BERMS pixel
a sandy loam soil with P = 6.73 and hcM = 5.70 cm.

We applied the inverse algorithm for the radar data for these two flights and compared the retrieval
errors with those obtained from the current AirMOSS algorithm that is based on the polynomial
function assumption (Figure 8). The depths z1, z2, and z3 have been chosen to coincide with 0, 20, and
45 cm. The applied inversion parameters are identical to the ones that had been previously used for
these sites with the polynomial function assumption. The lower bounds for the unknowns, namely θ1,
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θ2 and θ3, are 0.01, 0.05, and 0.01 m3/m3, respectively, for both sites. Upper bounds for the unknowns
are 0.10, 0.15, and 0.1 m3/m3, respectively, for both sites. These bounds were chosen based on in situ
soil moisture data.
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Ecosystem Research and Monitoring Site; RE: Richards’ equation.

As shown in Figure 8, the retrieval errors decreased, especially in the BERMS pixel, when
representing the soil moisture profile with the new RE solution. The computational inversion time
also decreased by about 20% for both cases. Nonetheless, the retrieved SMPs do not well resemble the
measured SMPs. In addition to the retrieval errors (due to the scattering model, SMP model, etc.), soil
heterogeneity could also affect the results, where point-scale measurements (in situ data) are compared
with pixel-scale estimates with the resolution of 3 arcsec (~100 m).

Unless an extensive error comparison for several AirMOSS sites and several dates is performed, it
is not possible to firmly claim that the error reduction (Figure 8) and computational time savings hold
for all cases. However, for these two specific cases, we believe the error reduction can be attributed
to two factors. Firstly, as discussed earlier, the sensitivity of the SMP function to variations of θ1, θ2

and θ3 is lower than the sensitivity of the polynomial to variations of a, b and c, which are in fact
a special case of c1, c2 and c3. Secondly, the unknowns of the new solution are physical parameters.
Therefore, the corresponding lower and upper bounds could be deduced with more confidence from
in situ data when compared to the second order polynomial. Note that large dynamic ranges of the
unknowns would result in inaccurate SMP retrievals, due to the limited length of the Markov chain in
the simulated annealing method, discussed in [14], and the ill-posedness of the problem.

We acknowledge that this method has its own limitations when compared to the current AirMOSS
method. One limitation is the requirement of a priori information about the SMP shape (i.e., whether it
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is case C or not). When there is no a priori information about the SMP shape (e.g., in situ observations),
a possible solution to this limitation would be first to assume that the profile shape satisfies cases A or
B, thus holding the required constraints (i.e., θ1 < θ2 and θ3 < θc). For the case that the error between
measured and calculated backscattering coefficients cannot be satisfactorily minimized with these
constrains, case C can then be assumed (i.e., P = 1).

These preliminary observations warrant an extensive study about the applicability and performance
of this method for other AirMOSS sites and other flight dates, which is part of ongoing research.

5. Conclusions

Equation (21), a closed-form analytical solution to Richards’ equation, is proposed as an alternative
to the second order polynomial that is currently employed in the Airborne Microwave Observatory
of Subcanopy and Subsurface (AirMOSS) root zone soil moisture retrieval algorithm. It has been
demonstrated that the second order polynomial is a special case of Equation (21) limited to P = 1.
Evaluation of Equation (21) based on both numerical simulations and measured data revealed that it
exhibits greater flexibility than the currently applied second order polynomial. Therefore, application
of Equation (21) is recommended for more accurate retrieval of root zone moisture profiles from
P-band radar remote sensing data. The results presented for two AirMOSS flights in 2015 demonstrate
a reduction of the retrieval error with the new method. In conclusion, it should be noted that while
the retrieval error and computational inversion time have improved for the two presented cases,
a more extensive study is required to investigate the applicability, performance, and advantages of this
method for AirMOSS root zone soil moisture retrievals.
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