101 research outputs found
New antineutrino energy spectra predictions from the summation of beta decay branches of the fission products
In this paper, we study the impact of the inclusion of the recently measured
beta decay properties of the Tc, Mo, and
Nb nuclei in an updated calculation of the antineutrino energy spectra
of the four fissible isotopes U, and Pu. These
actinides are the main contributors to the fission processes in Pressurized
Water Reactors. The beta feeding probabilities of the above-mentioned Tc, Mo
and Nb isotopes have been found to play a major role in the component
of the decay heat of Pu, solving a large part of the
discrepancy in the 4 to 3000\,s range. They have been measured using the Total
Absorption Technique (TAS), avoiding the Pandemonium effect. The calculations
are performed using the information available nowadays in the nuclear
databases, summing all the contributions of the beta decay branches of the
fission products. Our results provide a new prediction of the antineutrino
energy spectra of U, Pu and in particular of U for
which no measurement has been published yet. We conclude that new TAS
measurements are mandatory to improve the reliability of the predicted spectra.Comment: 10 pages, 2 figure
Neutron flux and spectrum in the Dresden Felsenkeller underground facility studied by moderated He counters
Ambient neutrons may cause significant background for underground
experiments. Therefore, it is necessary to investigate their flux and energy
spectrum in order to devise a proper shielding. Here, two sets of altogether
ten moderated He neutron counters are used for a detailed study of the
ambient neutron background in tunnel IV of the Felsenkeller facility,
underground below 45 meters of rock in Dresden/Germany. One of the moderators
is lined with lead and thus sensitive to neutrons of energies higher than 10
MeV. For each He counter-moderator assembly, the energy dependent neutron
sensitivity was calculated with the FLUKA code. The count rates of the ten
detectors were then fitted with the MAXED and GRAVEL packages. As a result,
both the neutron energy spectrum from 10 MeV to 300 MeV and the flux
integrated over the same energy range were determined experimentally.
The data show that at a given depth, both the flux and the spectrum vary
significantly depending on local conditions. Energy integrated fluxes of , , and cm
s, respectively, are measured for three sites within Felsenkeller tunnel
IV which have similar muon flux but different shielding wall configurations.
The integrated neutron flux data and the obtained spectra for the three sites
are matched reasonably well by FLUKA Monte Carlo calculations that are based on
the known muon flux and composition of the measurement room walls.Comment: 10 figures, 4 tables; to be published in Phys. Rev.
Deformation of the N=Z nucleus 76Sr using beta-decay studies
A novel method of deducing the deformation of the N=Z nucleus 76Sr is
presented. It is based on the comparison of the experimental Gamow-Teller
strength distribution B(GT) from its beta decay with the results of QRPA
calculations. This method confirms previous indications of the strong prolate
deformation of this nucleus in a totally independent way. The measurement has
been carried out with a large Total Absorption gamma Spectrometer, "Lucrecia",
newly installed at CERN-ISOLDE.Comment: Accepted in Phys. Rev. Letter
Fine structure of the Gamow-Teller resonance revealed in the decay of Ho-150 2(-) isomer
The γ rays following the 72s 150Ho 2- Gamow-Teller β decay have been investigated with the CLUSTER CUBE setup, an array of six EUROBALL CLUSTER Ge detectors in close cubic geometry, providing a γ ray detection sensitivity of 2×10-5 per β-parent decay for γ-ray energies up to 5 MeV. The fine structure of the Gamow-Teller resonance at 4.4-MeV excitation in 150Dy has been studied. The resolved levels are compared with Shell Model predictions
First results from the HENSA/ANAIS collaboration at the Canfranc Underground Laboratory
The HENSA/ANAIS collaboration aims for the precise determination of the neutron flux that could affect ANAIS-112, an experiment looking for the dark matter annual modulation using NaI(Tl) scintillators. In this work, the first measurements of the neutron flux and Monte Carlo simulations of the neutron spectrum are reported
Observations of the Gamow-Teller resonance in the rare-earth nuclei above Gd 146 populated in β decay
13 págs.; 11 figs. ; 1 tab.The rare-earth region of the nuclear table around the quasi-doubly magic nucleus Gd146 is one of the very few places in which the Gamow-Teller (GT) resonance can be populated in β decay. The appropriate technique to study such a phenomenon is total absorption spectroscopy, thanks to which one can measure the B(GT) distribution in β-decay experiments even when it is very fragmented and lies at high excitation energy in the daughter nucleus. Results on the GT resonance measured in the β decay of the odd-Z, N=83 nuclei Tb148, Ho150, and Tm152 are presented in this work and compared with shell-model calculations. The tail of the resonance is clearly observed up to the limit imposed by the Q value. This observation is important in the context of the understanding of the >quenching> of the GT strength. ©2016 American Physical SocietyThe authors would like to thank the GSI accelerator crew
and the MSEP group for their support. This work has been
partially supported by the Spanish Ministry (Grants No.
FPA2005-03993, No. FPA200806419-C02-01, No. FPA2011-
24553, No. FPA2012-32443, No. FPA2014-57196-C5, and
No. FPA2014-52823-C2-1-P) and the Generalitat Valenciana
(PROMETEOII/2014/019).Peer Reviewe
- …