1,323 research outputs found

    Evaluation of the zucker diabetic fatty (ZDF) rat as a model for human disease based on urinary peptidomic profiles

    Get PDF
    Representative animal models for diabetes-associated vascular complications are extremely relevant in assessing potential therapeutic drugs. While several rodent models for type 2 diabetes (T2D) are available, their relevance in recapitulating renal and cardiovascular features of diabetes in man is not entirely clear. Here we evaluate at the molecular level the similarity between Zucker diabetic fatty (ZDF) rats, as a model of T2D-associated vascular complications, and human disease by urinary proteome analysis. Urine analysis of ZDF rats at early and late stages of disease compared to age- matched LEAN rats identified 180 peptides as potentially associated with diabetes complications. Overlaps with human chronic kidney disease (CKD) and cardiovascular disease (CVD) biomarkers were observed, corresponding to proteins marking kidney damage (eg albumin, alpha-1 antitrypsin) or related to disease development (collagen). Concordance in regulation of these peptides in rats versus humans was more pronounced in the CVD compared to the CKD panels. In addition, disease-associated predicted protease activities in ZDF rats showed higher similarities to the predicted activities in human CVD. Based on urinary peptidomic analysis, the ZDF rat model displays similarity to human CVD but might not be the most appropriate model to display human CKD on a molecular level

    GPX4 regulates cellular necrosis and host resistance in Mycobacterium tuberculosis infection

    Get PDF
    Cellular necrosis during Mycobacterium tuberculosis (Mtb) infection promotes both immunopathology and bacterial dissemination. Glutathione peroxidase-4 (Gpx4) is an enzyme that plays a critical role in preventing iron-dependent lipid peroxidation–mediated cell death (ferroptosis), a process previously implicated in the necrotic pathology seen in Mtb-infected mice. Here, we document altered GPX4 expression, glutathione levels, and lipid peroxidation in patients with active tuberculosis and assess the role of this pathway in mice genetically deficient in or overexpressing Gpx4. We found that Gpx4-deficient mice infected with Mtb display substantially increased lung necrosis and bacterial burdens, while transgenic mice overexpressing the enzyme show decreased bacterial loads and necrosis. Moreover, Gpx4-deficient macrophages exhibited enhanced necrosis upon Mtb infection in vitro, an outcome suppressed by the lipid peroxidation inhibitor, ferrostatin-1. These findings provide support for the role of ferroptosis in Mtb-induced necrosis and implicate the Gpx4/GSH axis as a target for host-directed therapy of tuberculosis

    Genetic analysis of D-xylose metabolism by endophytic yeast strains of Rhodotorula graminis and Rhodotorula mucilaginosa

    Get PDF
    Two novel endophytic yeast strains, WP1 and PTD3, isolated from within the stems of poplar (Populus) trees, were genetically characterized with respect to their xylose metabolism genes. These two strains, belonging to the species Rhodotorula graminis and R. mucilaginosa, respectively, utilize both hexose and pentose sugars, including the common plant pentose sugar, D-xylose. The xylose reductase (XYL1) and xylitol dehydrogenase (XYL2) genes were cloned and characterized. The derived amino acid sequences of xylose reductase (XR) and xylose dehydrogenase (XDH) were 32%∼41% homologous to those of Pichia stipitis and Candida. spp., two species known to utilize xylose. The derived XR and XDH sequences of WP1 and PTD3 had higher homology (73% and 69% identity) with each other. WP1 and PTD3 were grown in single sugar and mixed sugar media to analyze the XYL1 and XYL2 gene regulation mechanisms. Our results revealed that for both strains, the gene expression is induced by D-xylose, and that in PTD3 the expression was not repressed by glucose in the presence of xylose

    Effect of Neoadjuvant Chemotherapy Followed by Surgical Resection on Survival in Patients With Limited Metastatic Gastric or Gastroesophageal Junction Cancer: The AIO-FLOT3 Trial

    Get PDF
    IMPORTANCE: Surgical resection has a potential benefit for patients with metastatic adenocarcinoma of the stomach and gastroesophageal junction. OBJECTIVE: To evaluate outcome in patients with limited metastatic disease who receive chemotherapy first and proceed to surgical resection. DESIGN, SETTING, AND PARTICIPANTS: The AIO-FLOT3 (Arbeitsgemeinschaft Internistische Onkologie-fluorouracil, leucovorin, oxaliplatin, and docetaxel) trial is a prospective, phase 2 trial of 252 patients with resectable or metastatic gastric or gastroesophageal junction adenocarcinoma. Patients were enrolled from 52 cancer care centers in Germany between February 1, 2009, and January 31, 2010, and stratified to 1 of 3 groups: resectable (arm A), limited metastatic (arm B), or extensive metastatic (arm C). Data cutoff was January 2012, and the analysis was performed in March 2013. INTERVENTIONS: Patients in arm A received 4 preoperative cycles of fluorouracil, leucovorin, oxaliplatin, and docetaxel (FLOT) followed by surgery and 4 postoperative cycles. Patients in arm B received at least 4 cycles of neoadjuvant FLOT and proceeded to surgical resection if restaging (using computed tomography and magnetic resonance imaging) showed a chance of margin-free (R0) resection of the primary tumor and at least a macroscopic complete resection of the metastatic lesions. Patients in arm C were offered FLOT chemotherapy and surgery only if required for palliation. Patients received a median (range) of 8 (1-15) cycles of FLOT. MAIN OUTCOMES AND MEASURES: The primary end point was overall survival. RESULTS: In total, 238 of 252 patients (94.4%) were eligible to participate. The median (range) age of participants was 66 (36-79) years in arm A (n = 51), 63 (28-79) years in arm B (n = 60), and 65 (23-83) years in arm C (n = 127). Patients in arm B (n = 60) had only retroperitoneal lymph node involvement (27 patients [45%]), liver involvement (11 [18.3%]), lung involvement (10 [16.7%]), localized peritoneal involvement (4 [6.7%]), or other (8 [13.3%]) incurable sites. Median overall survival was 22.9 months (95% CI, 16.5 to upper level not achieved) for arm B, compared with 10.7 months (95% CI, 9.1-12.8) for arm C (hazard ratio, 0.37; 95% CI, 0.25-0.55) (P < .001). The response rate for arm B was 60% (complete, 10%; partial, 50%), which is higher than the 43.3% for arm C. In arm B, 36 of 60 patients (60%) proceeded to surgery. The median overall survival was 31.3 months (95% CI, 18.9-upper level not achieved) for patients who proceeded to surgery and 15.9 months (95% CI, 7.1-22.9) for the other patients. CONCLUSIONS AND RELEVANCE: Patients with limited metastatic disease who received neoadjuvant chemotherapy and proceeded to surgery showed a favorable survival. The AIO-FLOT3 trial provides a rationale for further randomized clinical trials. TRIAL REGISTRATION: clinicaltrials.gov identifier: NCT00849615.info:eu-repo/semantics/publishedVersio

    The 10 kDa domain of human erythrocyte protein 4.1 binds the Plasmodium falciparum EBA-181 protein

    Get PDF
    BACKGROUND: Erythrocyte invasion by Plasmodium falciparum parasites represents a key mechanism during malaria pathogenesis. Erythrocyte binding antigen-181 (EBA-181) is an important invasion protein, which mediates a unique host cell entry pathway. A novel interaction between EBA-181 and human erythrocyte membrane protein 4.1 (4.1R) was recently demonstrated using phage display technology. In the current study, recombinant proteins were utilized to define and characterize the precise molecular interaction between the two proteins. METHODS: 4.1R structural domains (30, 16, 10 and 22 kDa domain) and the 4.1R binding region in EBA-181 were synthesized in specific Escherichia coli strains as recombinant proteins and purified using magnetic bead technology. Recombinant proteins were subsequently used in blot-overlay and histidine pull-down assays to determine the binding domain in 4.1R. RESULTS: Blot overlay and histidine pull-down experiments revealed specific interaction between the 10 kDa domain of 4.1R and EBA-181. Binding was concentration dependent as well as saturable and was abolished by heat denaturation of 4.1R. CONCLUSION: The interaction of EBA-181 with the highly conserved 10 kDa domain of 4.1R provides new insight into the molecular mechanisms utilized by P. falciparum during erythrocyte entry. The results highlight the potential multifunctional role of malaria invasion proteins, which may contribute to the success of the pathogenic stage of the parasite's life cycle

    Radio emission from Supernova Remnants

    Get PDF
    The explosion of a supernova releases almost instantaneously about 10^51 ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from a SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critical discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analyzing the prospects for future research with the latest generation radio telescopes.Comment: Revised version. 48 pages, 15 figure

    Use of radiolabelled choline as a pharmacodynamic marker for the signal transduction inhibitor geldanamycin

    Get PDF
    There is an urgent need to develop non-invasive pharmacodynamic endpoints for the evaluation of new molecular therapeutics that inhibit signal transduction. We hypothesised that, when labelled appropriately, changes in choline kinetics could be used to assess geldanamycin pharmacodynamics, which involves inhibition of the HSP90 molecular chaperone→Raf1→Mitogenic Extracellular Kinase→Extracellular Signal-Regulated Kinase 1 and 2 signal transduction pathway. Towards identifying a potential pharmacodynamic marker response, we have studied radiolabelled choline metabolism in HT29 human colon carcinoma cells following treatment with geldanamycin. We studied the effects of geldanamycin, on net cellular accumulation of (methyl-14C)choline and (methyl-14C)phosphocholine production. In parallel experiments, the effects of geldanamycin on extracellular signal-regulated kinase 1 and 2 phosphorylation and cell viability were also assessed. Additional validation studies were carried out with the mitogenic extracellular kinase inhibitor U0126 as a positive control; a cyclin-dependent kinase-2 inhibitor roscovitine and the phosphatidylinositol 3-kinase inhibitor LY294002 as negative controls. Hemicholinium-3, an inhibitor of choline transport and choline kinase activity was included as an additional control. In exponentially growing HT29 cells, geldanamycin inhibited extracellular signal-regulated kinase 1 and 2 phosphorylation in a concentration- and time-dependent manner. These changes were associated with a reduction in (methyl-14C)choline uptake, (methyl-14C) phosphocholine production and cell viability. Brief exposure to U0126, suppressed phosphocholine production to the same extent as Hemicholinium-3. In contrast to geldanamycin and U0126, which act upstream of extracellular signal-regulated kinase 1 and 2, roscovitine and LY294002 failed to suppress phosphocholine production. Our results suggest that when labelled with carbon-11 isotope, (methyl-11C)choline may be a useful pharmacodynamic marker for the non-invasive evaluation of geldanamycin analogues

    Tuning the electronic properties of boron nitride nanotube by mechanical uni-axial deformation: a DFT study

    Get PDF
    The effect of uni-axial strain on the electronic properties of (8,0) zigzag and (5,5) armchair boron nitride nanotubes (BNNT) is addressed by density functional theory calculation. The stress-strain profiles indicate that these two BNNTS of differing types display very similar mechanical properties, but there are variations in HOMO-LUMO gaps at different strains, indicating that the electronic properties of BNNTs not only depend on uni-axial strain, but on BNNT type. The variations in nanotube geometries, partial density of states of B and N atoms, B and N charges are also discussed for (8,0) and (5,5) BNNTs at different strains
    corecore