16,203 research outputs found

    TCB operation supply inventory system /TCBSYS/

    Get PDF
    System produces inventory report for each updated period and special report for long term inventory information summary. Report summarizes consumption, outstanding orders, and balance of each inventory item. System generates, corrects, and adjusts inventory tapes. Restrictions of system are listed

    Synthesis and control of generalised dynamically substructured systems

    Get PDF
    The experimental technique for testing engineering systems via the method of dynamic substructuring is receiving significant global interest, for example in the fields of large-scale structural, aerospace, and automotive system testing. Dynamically substructured systems (DSSs) enable full-size, critical components of a complete system to be physically tested in real-time, within a laboratory environment, while the remainder of the system is modelled numerically. The intention is that the combined physical-numerical DSS behaves as if it were the complete (or emulated) system.In an ideal mechanical DSS, for example, perfect synchronization of displacements and forces at the interfaces between the numerical and physical components (or substructures) is required. Hence, a key design feature of successful DSS systems is the high fidelity of the control action. Equally, a DSS controller must be able to cope with non-linear, time-varying, and uncertain parameters within the physical substructure dynamics.The main purpose of this paper is to present a generalized DSS framework, together with associated linear and adaptive control strategies, that are specifically tailored to achieve high synchronization performance. The initial studies of this problem, as described in an earlier paper by Stoten and Hyde, are therefore continued by generalizing both the DSS dynamics and the control strategies to include (a) a number of newly defined modes of operation and (b) multivariable dynamics. In addition, comparative implementation and simulation studies are included, based upon the DSS testing of a mechanical system (a planar quasi-motorcycle rig), which was specifically designed to highlight the main features of this research. The comparative studies show that excellent DSS control can be achieved, especially with the addition of an adaptive component to the controller, despite significant changes to the physical substructure dynamics

    Growth, current size and the role of the 'reversal paradox' in the foetal origins of adult disease: an illustration using vector geometry

    Get PDF
    BACKGROUND Numerous studies have reported inverse associations between birth weight and a range of diseases in later life. These have led to the development of the 'foetal origins of adult disease hypothesis'. However, many such studies have only been able to demonstrate a statistically significant association between birth weight and disease in later life by adjusting for current size. This has been interpreted as evidence that the impact of low birth weight on subsequent disease is somehow dependent on subsequent weight gain, and has led to a broadening of the hypothesis into the 'developmental origins of health and disease'. Unfortunately, much of the epidemiological evidence used for both of these interpretations is prone to a statistical artefact known as the 'reversal paradox'. The aim of this paper is to illustrate why, using vector geometry. MATERIALS AND METHODS This paper introduces the key concepts of vector geometry as applied to multiple regression analysis. This approach is then used to illustrate the similar statistical problems encountered when adjusting for current size or growth when exploring the association between birth weight and disease in later life. RESULTS Geometrically, the three covariates – birth size, growth, and current size – span only 2-dimensional space. Regressing disease in later life (i.e. the outcome variable) on any two of these covariates equates to projecting the disease variable onto the plane spanned by the three covariate vectors. The three possible regression models – where any two covariates are considered – are therefore equivalent and yield exactly the same model fit (R2). CONCLUSION Vector geometry illustrates why it is impossible to differentiate between the effects of growth from the effects of current size in studies exploring the relationship between size at birth and subsequent disease. For similar reasons, it is impossible to differentiate between the effects of growth and the effects of birth weight. Assessing the 'independent' impact of growth on later disease by adjusting for either birth weight or current size is therefore illusory

    Sparse seismic imaging using variable projection

    Full text link
    We consider an important class of signal processing problems where the signal of interest is known to be sparse, and can be recovered from data given auxiliary information about how the data was generated. For example, a sparse Green's function may be recovered from seismic experimental data using sparsity optimization when the source signature is known. Unfortunately, in practice this information is often missing, and must be recovered from data along with the signal using deconvolution techniques. In this paper, we present a novel methodology to simultaneously solve for the sparse signal and auxiliary parameters using a recently proposed variable projection technique. Our main contribution is to combine variable projection with sparsity promoting optimization, obtaining an efficient algorithm for large-scale sparse deconvolution problems. We demonstrate the algorithm on a seismic imaging example.Comment: 5 pages, 4 figure

    Observation of indirect ionization of W7+ in an electron-beam ion-trap plasma

    Full text link
    In this work, visible and extreme ultraviolet spectra of W7+ are measured using the high-temperature superconducting electron-beam ion trap (EBIT) at the Shanghai EBIT Laboratory under extremely low-energy conditions (lower than the nominal electron-beam energy of 130 eV). The relevant atomic structure is calculated using the flexible atomic code package based on the relativistic configuration interaction method. The GRASP2K code, in the framework of the multiconfiguration Dirac-Hartree-Fock method, is employed as well for calculating the wavelength of the M1 transition in the ground configuration of W7+. A line from the W7+ ions is observed at a little higher electron-beam energy than the ionization potential for W4+, making this line appear to be from W5+. A hypothesis for the charge-state evolution of W7+ is proposed based on our experimental and theoretical results; that is, the occurrence of W7+ ions results from indirect ionization caused by stepwise excitation between some metastable states of lower-charge-state W ions, at the nominal electron-beam energy of 59 eV
    • …
    corecore