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Abstract
Background
Numerous studies have reported inverse associations
between birth weight and a range of diseases in later life.
These have led to the development of the 'foetal origins of
adult disease hypothesis'. However, many such studies
have only been able to demonstrate a statistically signifi-
cant association between birth weight and disease in later
life by adjusting for current size. This has been interpreted
as evidence that the impact of low birth weight on subse-
quent disease is somehow dependent on subsequent
weight gain, and has led to a broadening of the hypothesis
into the 'developmental origins of health and disease'.
Unfortunately, much of the epidemiological evidence
used for both of these interpretations is prone to a statis-
tical artefact known as the 'reversal paradox'. The aim of
this paper is to illustrate why, using vector geometry.

Materials and methods
This paper introduces the key concepts of vector geometry
as applied to multiple regression analysis. This approach
is then used to illustrate the similar statistical problems
encountered when adjusting for current size or growth
when exploring the association between birth weight and
disease in later life.

Results
Geometrically, the three covariates – birth size, growth,
and current size – span only 2-dimensional space.
Regressing disease in later life (i.e. the outcome variable)
on any two of these covariates equates to projecting the

disease variable onto the plane spanned by the three cov-
ariate vectors. The three possible regression models –
where any two covariates are considered – are therefore
equivalent and yield exactly the same model fit (R2).

Conclusion
Vector geometry illustrates why it is impossible to differ-
entiate between the effects of growth from the effects of
current size in studies exploring the relationship between
size at birth and subsequent disease. For similar reasons,
it is impossible to differentiate between the effects of
growth and the effects of birth weight. Assessing the 'inde-
pendent' impact of growth on later disease by adjusting
for either birth weight or current size is therefore illusory.

Background
Numerous studies over the past two decades have found
inverse associations between birth weight and a range of
chronic diseases – associations which gave rise to the 'foe-
tal origins of adult disease hypothesis'. This argues that
under-nutrition or growth retardation in utero can have
adverse long-term effects on the development of vital
organ systems, thereby increasing the risk of a range of
metabolic and related disorders such as: hypertension [1];
diabetes [2]; arteriosclerosis [3]; and obesity [4]. However,
many such studies have only been able to demonstrate a
statistically significant association between birth weight
and disease in later life by adjusting for current size [5].
This has been interpreted as evidence that the impact of
low birth weight on subsequent disease is somehow
dependent on subsequent weight gain, and has led to a

Published: 02 August 2006

Epidemiologic Perspectives & Innovations 2006, 3:9 doi:10.1186/1742-5573-3-9

Received: 14 December 2005
Accepted: 02 August 2006

This article is available from: http://www.epi-perspectives.com/content/3/1/9

© 2006 Tu et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 10
(page number not for citation purposes)

http://www.epi-perspectives.com/content/3/1/9
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16884533
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Epidemiologic Perspectives & Innovations 2006, 3:9 http://www.epi-perspectives.com/content/3/1/9
broadening of the hypothesis into the 'developmental ori-
gins of health and disease' (DOHaD) [6].

Two mechanisms have been postulated to explain the
impact of current size on the relation between birth
weight and disease in later life. On the one hand, some
researchers argue that current size helps to distinguish
between those individuals who are genetically small and
essentially healthy at birth (i.e. those who remain rela-
tively small in later life), and those who are small at birth
as a result of intrauterine growth retardation (i.e. those
who subsequently attain a normal or above normal body
size, given better conditions for postnatal growth) [7]. On
the other hand, other researchers argue that intrauterine
conditions leading to growth retardation and low birth
weight can elicit permanent yet adaptive physiological
responses that are intended to prepare the foetus for a
postnatal environment in which nutritional resources are
scarce and growth is compromised [8]. In this second
mechanism, low birth weight babies who subsequently
experience better than expected conditions for postnatal
growth are thought to be ill-adapted to cope with normal
or excessive nutrition and, as a result, have an increased
risk of metabolic and related disorders [8]. Both mecha-
nisms appear plausible, and it is feasible that both might
operate at the same time, although the first focuses on
developmental damage to organ systems as a result of
intrauterine growth retardation, while the latter suggests
that its physiological effects are only maladaptive in post-
natal environments where growth is no longer compro-
mised.

To help establish the relative importance of pre- and post-
natal events on disease in later life, Lucas et al. [9] pro-
posed that four analytical models should be used to estab-
lish the role of size at birth, current size and the
interaction between the two. However, some researchers
have recently questioned the validity of this approach,
arguing that it might be inappropriate to adjust for current
body size [5], and that testing the interaction between size
at birth and current size is equivalent to testing the multi-
variate normality of birth size, current size and the disease
outcome [10]. Our previous studies have confirmed that
such adjustments can create a statistical artefact known as
the 'reversal paradox' – perhaps better known as 'Simp-
son's paradox' in the analysis of categorical data [11].
Some researchers might assume that focussing on postna-
tal weight gain gets around this problem, particularly in
studies of children where higher than average postnatal
growth amongst low birth weight infants is often inter-
preted as 'catch-up growth' – a pattern of compensatory
growth exhibited by those who have experienced growth
retardation in utero but are subsequently able to recover
what is presumed to be their 'intended' growth trajectory.

In fact, much of the epidemiological evidence used to sup-
port a focus on weight gain rather than current weight to
explore the 'DOHaD' is based on similarly questionable
statistical models – the only difference being in their inter-
pretation. For example, for studies examining systolic
blood pressure as the health outcome of interest, most
only find a statistically significant inverse relationship
with birth weight after adjustment for current weight or
body mass index [5]. When there is no adjustment for one
or more measures of current body size, the relation
between birth weight and blood pressure is substantially
reduced and is often not statistically significant [12,13].
For those researchers interested in growth rather than
attained size, the statistical effect of adjusting for current
weight seems to indicate that there is an interaction
between birth weight and current body weight, and that it
is more likely to be postnatal growth than size at birth that
is relevant to health in later life. This is because the rela-
tion between birth weight and blood pressure is substan-
tially weaker without adjustment for current weight
[12,13]. In practice this proves to be simply an alternative
interpretation of the same, ambiguous statistical relation-
ship – an issue the present study sets out to address using
vector geometry to illustrate how focusing on current size
or growth, and their associated interpretations, are equally
problematic. This is because both scenarios use similar
statistical models which are prone to the same statistical
artefact, even though they arrive at very different conclu-
sions. Moreover, the present study aims to show that
although growth appears to have a larger impact, this can-
not be statistically differentiated from that of current size.

To this end, we begin with a concise introduction to vector
geometry and use this to illustrate the multiple regression
analyses commonly used to explore the foetal origins of
adult disease hypothesis. We then demonstrate that the
common practice of regressing disease outcomes on birth
size and current size does not address the question of
whether growth has a greater impact than birth size or cur-
rent size. For this illustration we use adult systolic blood
pressure (BP) as the outcome, with birth weight (BW),
and current weight (CW) as potential covariates. A fourth
covariate, weight gain (WG), is defined as the difference
between current weight and birth weight (CW - BW) and
for simplicity, all four variables are treated as continuous.
For those interested in a fuller explanation of the basic
geometric tools involved, these have been summarised in
the Appendix.

Vector geometry, correlation and regression
Representation of variables as vectors
Vector geometry is a very useful tool for providing non-
statisticians with an intuitive understanding of statistical
theory, such as correlation and regression [14,15]. We use
vector geometry to illustrate 'simple' (one covariate) and
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'multiple' (two or more covariates) regression analyses. To
do this, we switch from the more familiar domain of 'var-
iable space' to the less familiar domain of 'subject space'.
In variable space, two variables are represented within a
plane by a scatter plot, whereas in subject space the same
two variables are represented within a plane by two scaled
vectors with lengths equal to the standard deviation (SD)
of their corresponding variables. The number of dimen-
sions needed to represent variables in subject space is no
greater than the number of variables. Although it is
impossible to visualize more than three dimensions, only
two dimensions are needed to illustrate correlation and
simple regression, and only three dimensions are required
to illustrate multiple regression.

Correlation and simple regression
When variables are represented as scaled vectors, the cor-
relation between the original variables equates to the
cosine of the angle between their corresponding vectors.
Furthermore, the simple regression coefficient of one var-
iable (the dependent variable) regressed on the other var-
iable (the covariate) is equivalent to the orthogonal
projection of the first vector on the second, i.e. a line per-
pendicular to the second vector is drawn from the end of
the first vector, and the intersection of the line with the
second vector determines the length and direction of the
projection of the first vector onto the second vector. For
instance, for two variables X and Y represented by vectors
x and y, their correlation coefficient (ρxy) is given by
cos(θxy) where θxy is the angle between x and y – see Figure
1. The simple regression coefficient of the variable X(bX),
when Y is regressed on X, is the length of the perpendicu-
lar projection of y on x divided by the length of x (denoted
||x||), i.e. bX = (||y||/||x||)cos(θxy) – see Figure 1.

Multiple regression
Regressing variable Y on the two variables X and Z is
equivalent, within vector geometry, to finding the orthog-
onal projection of the vector y onto the plane spanned by
the vectors x and z, then using the parallelogram rule to
find the contributing proportions of x and z that yield the
projected vector yp. For instance, if we denote the regres-
sion equation for these variables as: Y = bXX+bZZ, where bX
and bZ are partial regression coefficients, then using vector
geometry: yp = bXx+bZz, where bX and bZ are the proportions
(i.e. the projection weights) of the vectors x and z that
make up yp – see Figure 2.

Within vector geometry, the P-value for partial regression
coefficients obtained when controlling for other covari-
ates is derived from the projection of vectors for the out-
come and each covariate onto the subspace perpendicular
to all other covariates. For instance, when regressing Y on
both X and Z, the P-value for the partial regression coeffi-
cient for X is derived from the projection of x and y onto

the subspace perpendicular to z. Since the entire model
space is only three dimensions (spanned by x, y, and z),
the subspace perpendicular to z is a plane, denoted V⊥z –

(a) The correlation between variables Y and X (ρXY) is the cosine of θxy, the angle between vectors x and y; the projec-tion of y on x (denoted yp) has the length ||y||·cos(θxy)Figure 1
(a) The correlation between variables Y and X (ρXY) is the 
cosine of θxy, the angle between vectors x and y; the projec-
tion of y on x (denoted yp) has the length ||y||·cos(θxy). Vec-
tor yp lies in the same direction as vector x and may 
therefore be expressed as a multiple of x: yp = bXx, where bX 
= (||y||/||x||)cos(θxy) – the simple regression coefficient for X 
when Y is regressed on X. (b) If θxy = 90° (i.e. π/2 radians), 
then x and y are orthogonal (denoted x ⊥ y), the correlation 
between X and Y is zero: ρXY = cos(90°) = cos(π/2) = 0 and 
the regression coefficient for Y regressed on X is also zero.
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see Figure 2. The P-value derived from the F ratio test for
the partial regression coefficient bX is given as [15]:

where yx⊥z is the projection of y⊥z on x⊥z (which is equiva-
lent to the projection of y on x⊥z), and n is the sample size
[16]. The value of the F test with 1 and n-3 degrees of free-
dom is equivalent to that of the t-test with n-3 degrees of
freedom. A detailed explanation can be found in Wickens'
excellent book [15].

A geometrical illustration of adjustment for 
current weight in DOHaD
When examining the relationship between birth weight
and disease in later life, most studies have found that the
correlation and (simple) regression coefficients between
the two are close to zero or slightly negative [5]. However,
taking hypertension as an example, when blood pressure
is simultaneously regressed on birth weight and current
weight, the adjustment for current weight tends to reduce
or reverse any positive association between birth weight
and blood pressure, and accentuate any existing negative
association between the two [17,18]. This is an effect
known as the 'reversal paradox' [11].

To illustrate this geometrically, blood pressure, birth
weight and current weight can be represented as vectors,
bp, bw and cw respectively, where the correlation between
blood pressure and birth weight is nearly zero (corr(BP,
BW) ≈ 0) – hence bp and bw are almost orthogonal.
Assuming that bp and bw are orthogonal, the projection of
bp(bpp) on the plane spanned by bw and cw is also orthog-
onal to bw – see Figure 3. Within the multiple regression
model BP = bBWBW + bCWCW, the partial regression coef-
ficient for birth weight (bBW) can be derived using the par-
allelogram rule by projecting bpp onto the vector bw
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y

A geometrical illustration of multiple regression for blood pressure (BP, represented by vector bp), regressed simulta-neously on birth weight (BW, represented by vector bw) and current weight (CW, represented by vector cw)Figure 3
A geometrical illustration of multiple regression for blood 
pressure (BP, represented by vector bp), regressed simulta-
neously on birth weight (BW, represented by vector bw) and 
current weight (CW, represented by vector cw).
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The projection of y(yp) onto the plane spanned by x and z comprises the appropriate proportions of the vectors x and z where the proportion of vector x is bX and the proportion of z is bZFigure 2
The projection of y(yp) onto the plane spanned by x and z 
comprises the appropriate proportions of the vectors x and 
z where the proportion of vector x is bX and the proportion 
of z is bZ. These proportions are derived by means of the 
parallelogram rule: yp is projected onto x parallel to the 
direction of z to obtain the proportion bX of x. Likewise, yp is 
projected onto z parallel to the direction of x to obtain the 
proportion bZ of z. The P-value for the partial regression 
coefficient of X(bX), when Y is regressed on X whilst also 
adjusting for Z, is derived within vector geometry from the 
projection of y and x onto the subspace perpendicular to z 
(V⊥z).
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parallel to the direction of cw – see Figure 3. Conse-
quently, bBW is not zero, but negative, due to the positive
angles between bp and cw and between bw and cw. In
terms of variables, bBW is negative due to the positive cor-
relations between blood pressure (BP) and birth weight
(BW), and between current weight (CW) and birth weight
(BW).

In general, the smaller the angle between bp and cw, and
the smaller the angle between bw and cw, the greater the
length of the projection of bpp on bw along the vector cw.
In other words, the greater the positive correlation
between blood pressure and current weight, and the
greater the positive correlation between birth weight and
current weight, the greater the absolute value of bBW.
Moreover, while the partial regression coefficient for birth
weight (bBW) is not zero when blood pressure is simulta-
neously regressed on birth weight and current weight,
birth weight nevertheless contributes nothing to 'explain-
ing' the variance in blood pressure. This is because birth
weight and blood pressure are uncorrelated – i.e. they are
orthogonal in vector space.

A geometrical illustration of adjustment for 
weight gain in DOHaD
Since weight gain (WG) can be defined as the change in
body weight from birth to the current time (i.e. current
weight, CW, less birth weight, BW), all three variables are
mathematically related such that each can be derived from
the other two. Within vector geometry, this mathematical
relationship means that the three vectors representing the
three variables (bw, cw and wg) span only two dimensions
(i.e. a plane). In statistical terminology, the three variables
are collinear, and consequently only two (not all three) can
be entered simultaneously as covariates within multiple
regression analyses.

From a geometrical perspective, the equivalent to regress-
ing blood pressure simultaneously on all three covariates
would be to project the vector for blood pressure (bp)
onto the plane spanned by the three vectors representing
birth weight (bw), current weight (cw), and weight gain
(wg). However, it is impossible to assess the length of the
projection bpp to determine partial regression coefficients
using the parallelogram rule, because the direction of this
projection onto any one of the three covariate vectors (bw,
cw, or wg) is now parallel to the direction of the plane
spanned by the other two vectors. This dilemma results
from these three covariates being multicollinear, and it
can only be avoided by discarding one of the three vectors
involved – equivalent to removing the corresponding var-
iable from the regression model. Indeed, partial regres-
sion coefficients may only be determined for just two of
the three covariates, since the space spanned by all three
variables is only two-dimensional. Moreover, no matter

which two covariates are chosen, the subspace upon
which the outcome bp is projected remains the same: it is
the plane Vw, spanned by bw, cw and wg. For this reason,
in all three of the possible regression models – where BP
is regressed on: (i) BW and CW; (ii) WG and BW; or (iii)
CW and GW – the bpp projections are identical, as are the
R2 values – see Figure 4.

To illustrate this situation, compare the following two
models:

BP = b11 + b12BW + b13CW + ε1;  (Model 1)

BP = b21 + b22BW + b23WG + ε2;  (Model 2)

where: in Model 1, blood pressure (BP) is regressed on
birth weight (BW) and current weight (CW), with b11, b12,
b13, and ε1 being the model intercept, partial regression
coefficients for birth weight and current weight, and the
residual error, respectively; in Model 2, current weight is
replaced by weight gain (WG) and the regression coeffi-
cients and residual error are now b21, b22, b23 and ε2,
respectively. Despite these differences, for the reasons
mentioned earlier, these two models have the same degree
of fit (R2), and the residuals of both are identical (ε1 = ε2).

Using the parallelogram rule to derive partial regression
coefficients for each model, consider the line Lbw1, which
runs parallel to bw from the tip of bpp to intersect cw and
wg – see Figure 4. The partial regression coefficient b13 for
CW in Model 1 is the length of cw intersected by Lbw1, i.e.
the length of the vector OC divided by the length of cw.
Similarly, the partial regression coefficient b23 for WG in
Model 2 is the length of the vector OG divided by the
length of wg. Since cw = bw + wg, the line Lbw2 is parallel
to Lbw1 and, by elementary trigonometry, the ratio of the
lengths of OC and cw is identical to the ratio of the lengths
of OG and wg – see Figure 4. Therefore, although birth
weight has different partial regression coefficients in each
model (b12 ≠ b22), the partial regression coefficients for
current weight in Model 1 and weight gain in Model 2 are
identical (b13 = b23).

When using vector geometry to determine the P-value for
the partial regression coefficient of current weight in
Model 1 or weight gain in Model 2, whilst adjusting for
birth weight, it is necessary to identify the corresponding
vector subspace perpendicular to bw. This is the same vec-
tor subspace for each model and is a plane, denoted V⊥bw
– see Figure 4. Thus, the partial regression coefficient P-
value for current weight in Model 1 is derived by project-
ing bp and cw onto V⊥bw. Similarly, the partial regression
coefficient P-value for weight gain in Model 2 is derived
by projecting bp and wgonto V⊥bw. Since cw = bw + wg, the
projection of cw or wg onto V⊥bw is identical, albeit in the
Page 5 of 10
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reverse direction to bw – see Figure 4. Consequently,
regressing blood pressure on either current weight or
weight gain, whilst also adjusting for birth weight, yields
identical partial regression coefficient P-values for current
weight in Model 1 and weight gain in Model 2.

In general, when birth weight is a covariate in multiple
regression together with current weight, or any variable
that is a linear combination of birth weight and current

weight (such as weight gain), the partial regression coeffi-
cients for either of these will be identical in magnitude, as
will their respective P-values – even though the direction
of the coefficients will depend on the nature of the linear
relationship concerned.

Finally, we now consider a third model, where blood pres-
sure (BP) is simultaneously regressed on weight gain
(WG) and current weight (CW):

Model 1 includes birth weight (bw) and current weight (cw) as covariates; Model 2 includes birth weight (bw) and weight gain (wg) as covariatesFigure 4
Model 1 includes birth weight (bw) and current weight (cw) as covariates; Model 2 includes birth weight (bw) and weight gain 
(wg) as covariates. In determining the partial regression coefficients, blood pressure (bp) is projected (bpp) onto the plane (Vw) 
spanned by bw, cw and wg. The point O is the origin of the vectors bp, bpp, bw, cw and wg; C and G are the intersections of 
the line Lbw1 (running from the end of bpp parallel to bw) with vectors cw and wg. The line Lbw2, crossing the tips of cw and wg, 
runs parallel to Lbw1. From the two lines, Lbw1 and Lbw2 running parallel to bw, it is apparent that the absolute values of the two 
partial regression coefficients for current weight (CW) and weight gain (WG) are identical.
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BP = b31 + b32WG + b33CW + ε3;  (Model 3)

where b31, b32, b33 and ε3 are the intercept, the partial
regression coefficients for weight gain and current weight,
and the residual error, respectively. We know that Models
1 to 3 have identical R2 values and identical residuals (i.e.
ε1 = ε2 = ε3). Furthermore, it can be shown that the partial
regression coefficients for birth weight in Model 1 and
weight gain in Model 3 are identical (b32 = -b12) with iden-
tical P-values. Thus, when current weight is a covariate in
multiple regression analyses together with either birth
weight or weight gain, the absolute partial regression coef-
ficients for birth weight and weight gain are identical, as

are their P-values, model fit and, hence, the proportion of
variance explained.

Discussion
Lucas et al. [9] have previously discussed the algebraic
relationship of regression coefficients amongst the three
multivariable models presented above. However, in this
article, we used vector geometry to demonstrate why these
three models are effectively equivalent. Not only do the
partial regression coefficients exhibit algebraic relation-
ships, but the coefficient P-values and the variances
explained are identical. The crucial issue, therefore,
remains the interpretation of these models. For instance,
when adjusting for birth weight it is impossible to differ-
entiate between the effects of current weight or weight
gain on blood pressure, since either covariate gives rise to
identical coefficient P-values and an equivalent propor-
tion of outcome variance explained. Conversely, when
adjusting for current weight, the impact of weight gain on
blood pressure is identical to that of birth weight, albeit in
the opposite direction. For these reasons, the apparent
finding that weight gain has an 'independent' statistical
relationship with blood pressure may not reflect any gen-
uine aetiological relationship.

From a clinical viewpoint, higher weight gain is equiva-
lent to higher current weight if one adjusts for birth weight
(i.e. holds birth weight constant). Under these circum-
stances, arguing that weight gain is related to blood pres-
sure is equivalent to arguing that current weight is related
to blood pressure, which we know to be true. Further-
more, while adjusting for current weight tends to create a
stronger inverse relationship between birth weight and
blood pressure, it will also strengthen the positive rela-
tionship between blood pressure and current weight. It is
therefore unclear whether it is current weight or weight
gain that contributes to elevated blood pressure, or both.
Indeed, the stronger relationship between current weight
and blood pressure after adjusting for birth weight might
be interpreted as either: (i) that the impact of weight is
cumulative and linear; or (ii) that heavier people also
have, on average, larger birth weights. In the latter sce-
nario, adjusting for birth weight would be interpreted as
removing its 'protective' effect on blood pressure, thereby
increasing the strength of its relationship with current
weight. An alternative interpretation of the same regres-
sion model would be that, holding current weight con-
stant, those with greater weight gain must have a lower
birth weight, and hence the greater the weight gain the
higher the blood pressure.

Conclusion
As we have seen using vector geometry, weight gain can be
a proxy for either current weight (by adjusting for birth
weight) or birth weight (by adjusting for current weight).

(a) The two-dimensional plot of three subjects with measure-ments of two variables: systolic blood pressure [SBP] and body height in variable space; (b) the three-dimensional plot of the same data in subject spaceFigure 6
(a) The two-dimensional plot of three subjects with measure-
ments of two variables: systolic blood pressure [SBP] and 
body height in variable space; (b) the three-dimensional plot 
of the same data in subject space.

(a)

(b)
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Consequently, the role of weight gain in many of the
regression models commonly adopted to compare the
pre- and post-natal developmental origins of health and
disease is essentially ambiguous.

Competing interests
The author(s) declare that they have no competing inter-
ests.

The projection of bp on Vwand V⊥cw is vector bpp and bp⊥cw respectivelyFigure 5
The projection of bp on Vwand V⊥cw is vector bpp and bp⊥cw respectively. Since cw = bw + wg, the projections of bw and wg on 
V⊥cw (bw⊥cw and wg⊥cw respectively) will be in opposite directions (though parallel). Therefore, if the angle between bw⊥cw and 
bp⊥cw is φ, the angle between wg⊥cw and bp⊥cw will be (π - φ). From elementary trigonometry: cos(φ) = -cos(π - φ). Hence, in 
Model 3, after adjustment for current weight (CW), the P-value for weight gain (WG) is identical to that for birth weight (BW) 
in Model 1. From the two lines, Lcw1 and Lcw2 running parallel to cw, it is apparent that the absolute values of the two partial 
regression coefficients for birth weight (BW) and weight gain (WG) are identical.
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Appendix
Basic geometric tools
The most common form of geometry in clinical research
occurs in what is termed variable space, illustrated for
instance by a scatter plot. In the scatter plot of two varia-
bles, say X and Y, each with n independent observations
(X1 ... Xn) and (Y1 ... Yn), there will be n points in 2-dimen-
sional space (i.e. on a plane). The axes represent variables
X and Y, and the points are the observations made on each
subject. In place of using variables as axes, the same data
may be displayed in what is termed 'subject space', using
subjects as the axes (of which there would now be n) and
the variables X and Y become two points (in n-dimen-
sional space). By connecting the origin with each point, X
and Y become vectors in n-dimensional space, with coor-
dinates (X1 ... Xn) and (Y1 ... Yn) respectively.

Figure 6a and 6b illustrate the difference between variable
and subject space using a numerical example. Suppose the
body height and systolic blood pressure of three subjects
A, B and C are measured. In variable space, the data are
displayed as three points representing the three subjects in
a two-dimensional scatter plot (Figure 6a). In contrast, in
subject space, the data are displayed as two points repre-
senting the two variables in a three-dimensional scatter
plot (Figure 6b).

Although it is impossible to visualize n-dimensional
space, we only need two dimensions (i.e. a plane) to visu-
alize the relative relationship between the two vectors rep-
resenting X and Y. We effectively 'drop' the original axes,
retaining only the relative relationship between the vec-
tors representing the variables. In general, the number of
dimensions needed to represent variables in subject space
is no greater than the number of variables. Whilst it
remains impossible to visualize four or more dimensions,
using this condensed form of vector space, only two
dimensions are required to illustrate the principles of sim-
ple regression, and only three dimensions are required to
illustrate the principles of multiple regression. It is there-
fore useful to represent the original variable, e.g. X, as
scaled vector, x, where each original data point, Xi, is trans-
formed to xi such that the length of the vector (||x||) is
equal to the standard deviation (SD) of the original varia-
ble. This is achieved using the following formula:

Other variables (e.g. Y) are similarly transformed to yield
vectors (y). An immediate advantage of this approach is
that the correlation coefficient between the variables X
and Y is the cosine of the angle between the vectors x and
y. For instance, when the correlation between X and Y is
zero, the angle between x and y is 90° (i.e. π/2 radians),
and the two vectors are therefore orthogonal (denoted x ⊥
y). Similarly, when the correlation between X and Y is 0.5,
the angle between x and y is 60° (i.e. π/3 radians).
Another advantage of representing variables as scaled vec-
tors in this way is that the number of dimensions needed
for regression analyses is reduced by one. For instance, if
Y is regressed on X, there are three variables in the equa-
tion: Y, X and the intercept (a vector with the value 1 for
all its observations). After the transformation of Eq.A1,
the intercept becomes a zero vector, and hence redundant.
Therefore, we need at most k dimensions to represent k
variables in subject space when examining the role of mul-
tiple regression.
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