367 research outputs found

    VEGF, FGF1, FGF2 and EGF gene polymorphisms and psoriatic arthritis

    Get PDF
    BACKGROUND: Angiogenesis appears to be a first-order event in psoriatic arthritis (PsA). Among angiogenic factors, the cytokines vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and fibroblast growth factors 1 and 2 (FGF1 and FGF2) play a central role in the initiation of angiogenesis. Most of these cytokines have been shown to be upregulated in or associated with psoriasis, rheumatoid arthritis (RA) or ankylosing spondylitis (AS). As these diseases share common susceptibility associations with PsA, investigation of these angiogenic factors is warranted. METHODS: Two hundred and fifty-eight patients with PsA and 154 ethnically matched controls were genotyped using a Sequenom chip-based MALDI-TOF mass spectrometry platform. Four SNPs in the VEGF gene, three SNPs in the EGF gene and one SNP each in FGF1 and FGF2 genes were evaluated. Statistical analysis was performed using Fisher's exact test, and the Cochrane-Armitage trend test. Associations with haplotypes were estimated by using weighted logistic models, where the individual haplotype estimates were obtained using Phase v2.1. RESULTS: We have observed an increased frequency in the T allele of VEGF +936 (rs3025039) in control subjects when compared to our PsA patients [Fisher's exact p-value = 0.042; OR 0.653 (95% CI: 0.434, 0.982)]. Haplotyping of markers revealed no significant associations. CONCLUSION: The T allele of VEGF in +936 may act as a protective allele in the development of PsA. Further studies regarding the role of pro-angiogenic markers in PsA are warranted

    UHRF genes regulate programmed interdigital tissue regression and chondrogenesis in the embryonic limb

    Get PDF
    The primordium of the limb contains a number of progenitors far superior to those necessary to form the skeletal components of this appendage. During the course of development, precursors that do not follow the skeletogenic program are removed by cell senescence and apoptosis. The formation of the digits provides the most representative example of embryonic remodeling via cell degeneration. In the hand/foot regions of the embryonic vertebrate limb (autopod), the interdigital tissue and the zones of interphalangeal joint formation undergo massive degeneration that accounts for jointed and free digit morphology. Developmental senescence and caspase-dependent apoptosis are considered responsible for these remodeling processes. Our study uncovers a new upstream level of regulation of remodeling by the epigenetic regulators Uhrf1 and Uhrf2 genes. These genes are spatially and temporally expressed in the pre-apoptotic regions. UHRF1 and UHRF2 showed a nuclear localization associated with foci of methylated cytosine. Interestingly, nuclear labeling increased in cells progressing through the stages of degeneration prior to TUNEL positivity. Functional analysis in cultured limb skeletal progenitors via the overexpression of either UHRF1 or UHRF2 inhibited chondrogenesis and induced cell senescence and apoptosis accompanied with changes in global and regional DNA methylation. Uhrfs modulated canonical cell differentiation factors, such as Sox9 and Scleraxis, promoted apoptosis via up-regulation of Bak1, and induced cell senescence, by arresting progenitors at the S phase and upregulating the expression of p21. Expression of Uhrf genes in vivo was positively modulated by FGF signaling. In the micromass culture assay Uhrf1 was down-regulated as the progenitors lost stemness and differentiated into cartilage. Together, our findings emphasize the importance of tuning the balance between cell differentiation and cell stemness as a central step in the initiation of the so-called ?embryonic programmed cell death? and suggest that the structural organization of the chromatin, via epigenetic modifications, may be a precocious and critical factor in these regulatory events.Funding: We thank Montse Fernandez Calderon, Susana Dawalibi, and Sonia Perez Mantecon, for excellent technical assistance. This work was supported by a Grant (BFU2017-84046-P) from the Spanish Science and Innovation Ministry to J.A.M

    Adnexal masses: benign ovarian lesions and characterization - benign ovarian masses

    Get PDF
    Incidental adnexal masses are commonly identified in radiologists’ daily practice. Most of them are benign ovarian lesions of no concern. However, sometimes defining the origin of a pelvic mass may be challenging, especially on ultrasound alone. Moreover, ultrasound not always allows the distinction between a benign and a malignant adnexal tumor. Most of sonographically indeterminate adnexal masses turn out to be common benign entities that can be readily diagnosed by magnetic resonance imaging. The clinical impact of predicting the likelihood of malignancy is crucial for proper patient management. The first part of this chapter will cover the technical magnetic resonance imaging aspects of ovarian lesions characterization as well as the imaging features that allow the radiologist to correctly define the anatomic origin of a pelvic mass. Next, the authors will go through different benign ovarian entities and through the different histologic types of benign ovarian tumors. Finally the functional ovarian tumors and the ovarian tumors in children, adolescents, young females, and pregnant women will be covered.info:eu-repo/semantics/publishedVersio

    Mathematical Modelling of DNA Replication Reveals a Trade-off between Coherence of Origin Activation and Robustness against Rereplication

    Get PDF
    Eukaryotic genomes are duplicated from multiple replication origins exactly once per cell cycle. In Saccharomyces cerevisiae, a complex molecular network has been identified that governs the assembly of the replication machinery. Here we develop a mathematical model that links the dynamics of this network to its performance in terms of rate and coherence of origin activation events, number of activated origins, the resulting distribution of replicon sizes and robustness against DNA rereplication. To parameterize the model, we use measured protein expression data and systematically generate kinetic parameter sets by optimizing the coherence of origin firing. While randomly parameterized networks yield unrealistically slow kinetics of replication initiation, networks with optimized parameters account for the experimentally observed distribution of origin firing times. Efficient inhibition of DNA rereplication emerges as a constraint that limits the rate at which replication can be initiated. In addition to the separation between origin licensing and firing, a time delay between the activation of S phase cyclin-dependent kinase (S-Cdk) and the initiation of DNA replication is required for preventing rereplication. Our analysis suggests that distributive multisite phosphorylation of the S-Cdk targets Sld2 and Sld3 can generate both a robust time delay and contribute to switch-like, coherent activation of replication origins. The proposed catalytic function of the complex formed by Dpb11, Sld3 and Sld2 strongly enhances coherence and robustness of origin firing. The model rationalizes how experimentally observed inefficient replication from fewer origins is caused by premature activation of S-Cdk, while premature activity of the S-Cdk targets Sld2 and Sld3 results in DNA rereplication. Thus the model demonstrates how kinetic deregulation of the molecular network governing DNA replication may result in genomic instability

    A Novel Intracellular Isoform of Matrix Metalloproteinase-2 Induced by Oxidative Stress Activates Innate Immunity

    Get PDF
    Experimental and clinical evidence has pinpointed a critical role for matrix metalloproteinase-2 (MMP-2) in ischemic ventricular remodeling and systolic heart failure. Prior studies have demonstrated that transgenic expression of the full-length, 68 kDa, secreted form of MMP-2 induces severe systolic failure. These mice also had unexpected and severe mitochondrial structural abnormalities and dysfunction. We hypothesized that an additional intracellular isoform of MMP-2, which affects mitochondrial function is induced under conditions of systolic failure-associated oxidative stress.Western blots of cardiac mitochondria from the full length MMP-2 transgenics, ageing mice and a model of accelerated atherogenesis revealed a smaller 65 kDa MMP-2 isoform. Cultured cardiomyoblasts subjected to transient oxidative stress generated the 65 kDa MMP-2 isoform. The 65 kDa MMP-2 isoform was also induced by hypoxic culture of cardiomyoblasts. Genomic database analysis of the MMP-2 gene mapped transcriptional start sites and RNA transcripts induced by hypoxia or epigenetic modifiers within the first intron of the MMP-2 gene. Translation of these transcripts yields a 65 kDa N-terminal truncated isoform beginning at M(77), thereby deleting the signal sequence and inhibitory prodomain. Cellular trafficking studies demonstrated that the 65 kDa MMP-2 isoform is not secreted and is present in cytosolic and mitochondrial fractions, while the full length 68 kDa isoform was found only in the extracellular space. Expression of the 65 kDa MMP-2 isoform induced mitochondrial-nuclear stress signaling with activation of the pro-inflammatory NF-κB, NFAT and IRF transcriptional pathways. By microarray, the 65 kDa MMP-2 induces an innate immunity transcriptome, including viral stress response genes, innate immunity transcription factor IRF7, chemokines and pro-apoptosis genes.A novel N-terminal truncated intracellular isoform of MMP-2 is induced by oxidative stress. This isoform initiates a primary innate immune response that may contribute to progressive cardiac dysfunction in the setting of ischemia and systolic failure

    Structural and Functional Analysis of Laninamivir and its Octanoate Prodrug Reveals Group Specific Mechanisms for Influenza NA Inhibition

    Get PDF
    The 2009 H1N1 influenza pandemic (pH1N1) led to record sales of neuraminidase (NA) inhibitors, which has contributed significantly to the recent increase in oseltamivir-resistant viruses. Therefore, development and careful evaluation of novel NA inhibitors is of great interest. Recently, a highly potent NA inhibitor, laninamivir, has been approved for use in Japan. Laninamivir is effective using a single inhaled dose via its octanoate prodrug (CS-8958) and has been demonstrated to be effective against oseltamivir-resistant NA in vitro. However, effectiveness of laninamivir octanoate prodrug against oseltamivir-resistant influenza infection in adults has not been demonstrated. NA is classified into 2 groups based upon phylogenetic analysis and it is becoming clear that each group has some distinct structural features. Recently, we found that pH1N1 N1 NA (p09N1) is an atypical group 1 NA with some group 2-like features in its active site (lack of a 150-cavity). Furthermore, it has been reported that certain oseltamivir-resistant substitutions in the NA active site are group 1 specific. In order to comprehensively evaluate the effectiveness of laninamivir, we utilized recombinant N5 (typical group 1), p09N1 (atypical group 1) and N2 from the 1957 pandemic H2N2 (p57N2) (typical group 2) to carry out in vitro inhibition assays. We found that laninamivir and its octanoate prodrug display group specific preferences to different influenza NAs and provide the structural basis of their specific action based upon their novel complex crystal structures. Our results indicate that laninamivir and zanamivir are more effective against group 1 NA with a 150-cavity than group 2 NA with no 150-cavity. Furthermore, we have found that the laninamivir octanoate prodrug has a unique binding mode in p09N1 that is different from that of group 2 p57N2, but with some similarities to NA-oseltamivir binding, which provides additional insight into group specific differences of oseltamivir binding and resistance

    Application of the rainbow trout derived intestinal cell line (RTgutGC) for ecotoxicological studies: molecular and cellular responses following exposure to copper.

    Get PDF
    There is an acknowledged need for in vitro fish intestinal model to help understand dietary exposure to chemicals in the aquatic environment. The presence and use of such models is however largely restrictive due to technical difficulties in the culturing of enterocytes in general and the availability of appropriate established cell lines in particular. In this study, the rainbow trout (Oncorhynchus mykiss) intestinal derived cell line (RTgutGC) was used as a surrogate for the "gut sac" method. To facilitate comparison, RTgutGC cells were grown as monolayers (double-seeded) on permeable Transwell supports leading to a two-compartment intestinal model consisting of polarised epithelium. This two-compartment model divides the system into an upper apical (lumen) and a lower basolateral (portal blood) compartment. In our studies, these cells stained weakly for mucosubstances, expressed the tight junction protein ZO-1 in addition to E-cadherin and revealed the presence of polarised epithelium in addition to microvilli protrusions. The cells also revealed a comparable transepithelial electrical resistance (TEER) to the in vivo situation. Importantly, the cell line tolerated apical saline (1:1 ratio) thus mimicking the intact organ to allow assessment of uptake of compounds across the intestine. Following an exposure over 72 h, our study demonstrated that the RTgutGC cell line under sub-lethal concentrations of copper sulphate (Cu) and modified saline solutions demonstrated uptake of the metal with saturation levels comparable to short term ex situ gut sac preparations. Gene expression analysis revealed no significant influence of pH or time on mRNA expression levels of key stress related genes (i.e. CYP3A, GST, mtA, Pgp and SOD) in the Transwell model. However, significant positive correlations were found between all genes investigated suggesting a co-operative relationship amongst the genes studied. When the outlined characteristics of the cell line are combined with the division of compartments, the RTgutGC double seeded model represents a potential animal replacement model for ecotoxicological studies. Overall, this model could be used to study the effects and predict aquatic gastrointestinal permeability of metals and other environmentally relevant contaminants in a cost effective and high throughput manner

    Direct Metagenomic Detection of Viral Pathogens in Nasal and Fecal Specimens Using an Unbiased High-Throughput Sequencing Approach

    Get PDF
    With the severe acute respiratory syndrome epidemic of 2003 and renewed attention on avian influenza viral pandemics, new surveillance systems are needed for the earlier detection of emerging infectious diseases. We applied a “next-generation” parallel sequencing platform for viral detection in nasopharyngeal and fecal samples collected during seasonal influenza virus (Flu) infections and norovirus outbreaks from 2005 to 2007 in Osaka, Japan. Random RT-PCR was performed to amplify RNA extracted from 0.1–0.25 ml of nasopharyngeal aspirates (N = 3) and fecal specimens (N = 5), and more than 10 µg of cDNA was synthesized. Unbiased high-throughput sequencing of these 8 samples yielded 15,298–32,335 (average 24,738) reads in a single 7.5 h run. In nasopharyngeal samples, although whole genome analysis was not available because the majority (>90%) of reads were host genome–derived, 20–460 Flu-reads were detected, which was sufficient for subtype identification. In fecal samples, bacteria and host cells were removed by centrifugation, resulting in gain of 484–15,260 reads of norovirus sequence (78–98% of the whole genome was covered), except for one specimen that was under-detectable by RT-PCR. These results suggest that our unbiased high-throughput sequencing approach is useful for directly detecting pathogenic viruses without advance genetic information. Although its cost and technological availability make it unlikely that this system will very soon be the diagnostic standard worldwide, this system could be useful for the earlier discovery of novel emerging viruses and bioterrorism, which are difficult to detect with conventional procedures

    Self-oligomerization regulates stability of survival motor neuron protein isoforms by sequestering an SCF<sup>Slmb</sup> degron

    Get PDF
    Spinal muscular atrophy (SMA) is caused by homozygous mutations in human SMN1. Expression of a duplicate gene (SMN2) primarily results in skipping of exon 7 and production of an unstable protein isoform, SMNΔ7. Although SMN2 exon skipping is the principal contributor to SMA severity, mechanisms governing stability of survival motor neuron (SMN) isoforms are poorly understood. We used a Drosophila model system and label-free proteomics to identify the SCFSlmb ubiquitin E3 ligase complex as a novel SMN binding partner. SCFSlmb interacts with a phosphor degron embedded within the human and fruitfly SMN YG-box oligomerization domains. Substitution of a conserved serine (S270A) interferes with SCFSlmb binding and stabilizes SMNΔ7. SMA-causing missense mutations that block multimerization of full-length SMN are also stabilized in the degron mutant background. Overexpression of SMNΔ7S270A, but not wild-type (WT) SMNΔ7, provides a protective effect in SMA model mice and human motor neuron cell culture systems. Our findings support a model wherein the degron is exposed when SMN is monomeric and sequestered when SMN forms higher-order multimers
    corecore