25 research outputs found

    Detection of infectious disease outbreaks in twenty-two fragile states, 2000-2010: a systematic review.

    Get PDF
    Fragile states are home to a sixth of the world's population, and their populations are particularly vulnerable to infectious disease outbreaks. Timely surveillance and control are essential to minimise the impact of these outbreaks, but little evidence is published about the effectiveness of existing surveillance systems. We did a systematic review of the circumstances (mode) of detection of outbreaks occurring in 22 fragile states in the decade 2000-2010 (i.e. all states consistently meeting fragility criteria during the timeframe of the review), as well as time lags from onset to detection of these outbreaks, and from detection to further events in their timeline. The aim of this review was to enhance the evidence base for implementing infectious disease surveillance in these complex, resource-constrained settings, and to assess the relative importance of different routes whereby outbreak detection occurs.We identified 61 reports concerning 38 outbreaks. Twenty of these were detected by existing surveillance systems, but 10 detections occurred following formal notifications by participating health facilities rather than data analysis. A further 15 outbreaks were detected by informal notifications, including rumours.There were long delays from onset to detection (median 29 days) and from detection to further events (investigation, confirmation, declaration, control). Existing surveillance systems yielded the shortest detection delays when linked to reduced barriers to health care and frequent analysis and reporting of incidence data.Epidemic surveillance and control appear to be insufficiently timely in fragile states, and need to be strengthened. Greater reliance on formal and informal notifications is warranted. Outbreak reports should be more standardised and enable monitoring of surveillance systems' effectiveness

    Co-occurrence of Point Mutations in the Voltage-Gated Sodium Channel of Pyrethroid-Resistant Aedes aegypti Populations in Myanmar

    Get PDF
    Background:Single amino acid substitutions in the voltage-gated sodium channel associated with pyrethroid resistance constitute one of the main causative factors of knockdown resistance in insects. The kdr gene has been observed in several mosquito species; however, point mutations in the para gene of Aedes aegypti populations in Myanmar have not been fully characterized. The aim of the present study was to determine the types and frequencies of mutations in the para gene of Aedes aegypti collected from used tires in Yangon City, Myanmar.Methodology/Principal Findings:We determined high pyrethroid resistance in Aedes aegypti larvae at all collection sites in Yangon City, by using a simplified knockdown bioassay. We showed that V1016G and S989P mutations were widely distributed, with high frequencies (84.4% and 78.8%, respectively). By contrast, we were unable to detect I1011M (or I1011V) or L1014F mutations. F1534C mutations were also widely distributed, but with a lower frequency than the V1016G mutation (21.2%). High percentage of co-occurrence of the homozygous V1016G/S989P mutations was detected (65.7%). Additionally, co-occurrence of homozygous V1016G/F1534C mutations (2.9%) and homozygous V1016G/F1534C/S989P mutations (0.98%) were detected in the present study.Conclusions/Significance:Pyrethroid insecticides were first used for malaria control in 1992, and have since been constantly used in Myanmar. This intensive use may explain the strong selection pressure toward Aedes aegypti, because this mosquito is generally a domestic and endophagic species with a preference for indoor breeding. Extensive use of DDT for malaria control before the use of this chemical was banned may also explain the development of pyrethroid resistance in Aedes aegypti

    Soil-Transmitted Helminth Reinfection after Drug Treatment: A Systematic Review and Meta-Analysis

    Get PDF
    Infections with soil-transmitted helminths (the roundworm Ascaris lumbricoides, the whipworm Trichuris trichiura, and hookworm) affect over 1 billion people, particularly rural communities in the developing world. The global strategy to control soil-transmitted helminth infections is ‘preventive chemotherapy’, which means large-scale administration of anthelmintic drugs to at-risk populations. However, because reinfection occurs after treatment, ‘preventive chemotherapy’ must be repeated regularly. Our systematic review and meta-analysis found that at 3, 6, and 12 months after treatment, A. lumbricoides prevalence reached 26% (95% confidence interval (CI): 16–43%), 68% (95% CI: 60–76%) and 94% (95% CI: 88–100%) of pretreatment levels, respectively. For T. trichiura, respective reinfection prevalence at these time points were 36% (95% CI: 28–47%), 67% (95% CI: 42–100%), and 82% (95% CI: 62–100%); and for hookworm, 30% (95% CI: 26–34%), 55% (95% CI: 34–87%), and 57% (95% CI: 49–67%). Prevalence and intensity of reinfection were positively correlated with pretreatment infection status. Our results suggest a frequent anthelmintic drug administration to maximize the benefit of preventive chemotherapy. Moreover, an integrated control strategy, consisting of preventive chemotherapy combined with health education and environmental sanitation is needed to interrupt transmission of soil-transmitted helminths

    Synthetic urine

    No full text
    Zur Manipulation von Immunoassays auf Suchtstoffe ist eine ganze Reihe von Techniken und Methoden bekannt. In entsprechenden Internetforen wird diesbezüglich die Verwendung von „künstlichem Urin“ diskutiert und als erfolgversprechend propagiert. In diesem Beitrag werden ein kommerziell erhältlicher synthetischer Urin auf seine Zusammensetzung und die Möglichkeiten zur Unterscheidung von Humanurin untersucht

    Optimal Health and Disease Management Using Spatial Uncertainty: A Geographic Characterization of Emergent Artemisinin-Resistant Plasmodium Falciparum Distributions in Southeast Asia

    Get PDF
    Artemisinin-resistant Plasmodium falciparum malaria parasites are now present across much of mainland Southeast Asia, where ongoing surveys are measuring and mapping their spatial distribution. These efforts require substantial resources. Here we propose a generic 'smart surveillance' methodology to identify optimal candidate sites for future sampling and thus map the distribution of artemisinin resistance most efficiently
    corecore