20 research outputs found

    Estimating Dengue Transmission Intensity from Case-Notification Data from Multiple Countries

    No full text
    Despite being the most widely distributed mosquito-borne viral infection, estimates of dengue transmission intensity and associated burden remain ambiguous. With advances in the development of novel control measures, obtaining robust estimates of average dengue transmission intensity is key for assessing the burden of disease and the likely impact of interventions.We estimated the force of infection (λ) and corresponding basic reproduction numbers (R0) by fitting catalytic models to age-stratified incidence data identified from the literature. We compared estimates derived from incidence and seroprevalence data and assessed the level of under-reporting of dengue disease. In addition, we estimated the relative contribution of primary to quaternary infections to the observed burden of dengue disease incidence. The majority of R0 estimates ranged from one to five and the force of infection estimates from incidence data were consistent with those previously estimated from seroprevalence data. The baseline reporting rate (or the probability of detecting a secondary infection) was generally low (<25%) and varied within and between countries.As expected, estimates varied widely across and within countries, highlighting the spatio-temporally heterogeneous nature of dengue transmission. Although seroprevalence data provide the maximum information, the incidence models presented in this paper provide a method for estimating dengue transmission intensity from age-stratified incidence data, which will be an important consideration in areas where seroprevalence data are not available

    Visual afferences to flight steering muscles controlling optomotor responses of the fly

    Get PDF
    Egelhaaf M. Visual afferences to flight steering muscles controlling optomotor responses of the fly. Journal of Comparative Physiology, A: Sensory Neural and Behavioral Physiology. 1989;165(6):719-730.In tethered flying house-flies (Musca domestica) visually induced turning reactions were monitored under open-loop conditions simultaneously with the spike activity of four types of steering muscles (M.b1, M.b2, M.I1, M.III1). Specific behavioral response components are attributed to the activity of particular muscles. Compensatory optomotor turning reactions to large-field image displacements mainly occur when the stimulus pattern oscillates at low frequencies. In contrast, turning responses towards objects are preferentially induced by motion of relatively small stimuli at high oscillation frequencies. The different steering muscles seem to be functionally specialized in that they contribute to the control of these behavioral responses in different ways. The muscles I1, III1 and b2 are preferentially active during small-field motion at high oscillation frequencies. They are much less active during small-field motion at low oscillation frequencies and large-field motion at all oscillation frequencies which were tested. M.b2 is most extreme in this respect. These steering muscles thus mediate mainly turns towards objects. In contrast, M.b1 responds best during large-field motion at low oscillation frequencies and, thus, is appropriate to control compensatory optomotor responses. However, the activity of this muscle is also strongly modulated during small-field motion at high oscillation frequencies and, therefore, may be involved also in the control of turns towards objects. These functional specializations of the different steering muscles in mediating different behavioral response components are related to the properties of two parallel visual pathways that are selectively tuned to large-field and small-field motion, respectively

    Forest cover and climate as potential drivers for dengue fever in Sumatra and Kalimantan 2006–2016: a spatiotemporal analysis

    No full text
    Objectives: To describe and quantify spatiotemporal trends of dengue fever at district level in Sumatra and Kalimantan, Indonesia in relation to forest cover and climatic factors
    corecore