750 research outputs found
Characterizing Batteries by In Situ Electrochemical Atomic Force Microscopy: A Critical Review
Although lithium, and other alkali ion, batteries are widely utilized and studied, many of the chemical and mechanical processes that underpin the materials within, and drive their degradation/failure, are not fully understood. Hence, to enhance the understanding of these processes various ex situ, in situ and operando characterization methods are being explored. Recently, electrochemical atomic force microscopy (EC-AFM), and related techniques, have emerged as crucial platforms for the versatile characterization of battery material surfaces. They have revealed insights into the morphological, mechanical, chemical, and physical properties of battery materials when they evolve under electrochemical control. This critical review will appraise the progress made in the understanding batteries using EC-AFM, covering both traditional and new electrode–electrolyte material junctions. This progress will be juxtaposed against the ability, or inability, of the system adopted to embody a truly representative battery environment. By contrasting key EC-AFM literature with conclusions drawn from alternative characterization tools, the unique power of EC-AFM to elucidate processes at battery interfaces is highlighted. Simultaneously opportunities for complementing EC-AFM data with a range of spectroscopic, microscopic, and diffraction techniques to overcome its limitations are described, thus facilitating improved battery performance
Neutron studies of Na-ion battery materials
The relative vast abundance and more equitable global distribution of terrestrial sodium makes sodium-ion batteries (NIBs) potentially cheaper and more sustainable alternatives to commercial lithium-ion batteries (LIBs). However, the practical capacities and cycle lives of NIBs at present do not match those of LIBs and have therefore hindered their progress to commercialisation. The present drawback of NIB technology stems largely from the electrode materials and their associated Na+ion storage mechanisms. Increased understanding of the electrochemical storage mechanisms and kinetics is therefore vital for the development of current and novel materials to realise the commercial NIB. In contrast to x-ray techniques, the non-dependency of neutron scattering on the atomic number of elements (Z) can substantially increase the scattering contrast of small elements such as sodium and carbon, making neutron techniques powerful for the investigation of NIB electrode materials. Moreover, neutrons are far more penetrating which enables more complex sample environments including in situ and operando studies. Here, we introduce the theory of, and review the use of, neutron diffraction and quasi-elastic neutron scattering, to investigate the structural and dynamic properties of electrode and electrolyte materials for NIBs. To improve our understanding of the actual sodium storage mechanisms and identify intermediate stages during charge/discharge, ex situ, in situ, and operando neutron experiments are required. However, to date there are few studies where operando experiments are conducted during electrochemical cycling. This highlights an opportunity for research to elucidate the operating mechanisms within NIB materials that are under much debate at present
Neutron studies of Na-ion battery materials
The relative vast abundance and more equitable global distribution of terrestrial sodium makes sodium-ion batteries (NIBs) potentially cheaper and more sustainable alternatives to commercial lithium-ion batteries (LIBs). However, the practical capacities and cycle lives of NIBs at present do not match those of LIBs and have therefore hindered their progress to commercialisation. The present drawback of NIB technology stems largely from the electrode materials and their associated Na+ion storage mechanisms. Increased understanding of the electrochemical storage mechanisms and kinetics is therefore vital for the development of current and novel materials to realise the commercial NIB. In contrast to x-ray techniques, the non-dependency of neutron scattering on the atomic number of elements (Z) can substantially increase the scattering contrast of small elements such as sodium and carbon, making neutron techniques powerful for the investigation of NIB electrode materials. Moreover, neutrons are far more penetrating which enables more complex sample environments including in situ and operando studies. Here, we introduce the theory of, and review the use of, neutron diffraction and quasi-elastic neutron scattering, to investigate the structural and dynamic properties of electrode and electrolyte materials for NIBs. To improve our understanding of the actual sodium storage mechanisms and identify intermediate stages during charge/discharge, ex situ, in situ, and operando neutron experiments are required. However, to date there are few studies where operando experiments are conducted during electrochemical cycling. This highlights an opportunity for research to elucidate the operating mechanisms within NIB materials that are under much debate at present
The HATNet and HATSouth Exoplanet Surveys
The Hungarian-made Automated Telescope Network (HATNet) has been in operation
since 2003, with the key science goal being the discovery and accurate
characterization of transiting extrasolar planets (TEPs) around bright stars.
Using six small, 11\,cm\ aperture, fully automated telescopes in Arizona and
Hawaii, as of 2017 March, it has discovered and accurately characterized 67
such objects. The HATSouth network of telescopes has been in operation since
2009, using slightly larger, 18\,cm diameter optical tubes. It was the first
global network of telescopes using identical instrumentation. With three
premier sites spread out in longitude (Chile, Namibia, Australia), the HATSouth
network permits round-the-clock observations of a 128 square arcdegree swath of
the sky at any given time, weather permitting. As of this writing, HATSouth has
discovered 36 transiting exoplanets. Many of the altogether ~100 HAT and
HATSouth exoplanets were the first of their kind. They have been important
contributors to the rapidly developing field of exoplanets, motivating and
influencing observational techniques, theoretical studies, and also actively
shaping future instrumentation for the detection and characterization of such
objects.Comment: Invited review chapter, accepted for publication in "Handbook of
Exoplanets", edited by H.J. Deeg and J.A. Belmonte, Springer Reference Work
Speed has an effect on multiple-object tracking independently of the number of close encounters between targets and distractors
Multiple-object tracking (MOT) studies have shown that tracking ability declines as object speed increases. However, this might be attributed solely to the increased number of times that target and distractor objects usually pass close to each other (“close encounters”) when speed is increased, resulting in more target–distractor confusions. The present study investigates whether speed itself affects MOT ability by using displays in which the number of close encounters is held constant across speeds. Observers viewed several pairs of disks, and each pair rotated about the pair’s midpoint and, also, about the center of the display at varying speeds. Results showed that even with the number of close encounters held constant across speeds, increased speed impairs tracking performance, and the effect of speed is greater when the number of targets to be tracked is large. Moreover, neither the effect of number of distractors nor the effect of target–distractor distance was dependent on speed, when speed was isolated from the typical concomitant increase in close encounters. These results imply that increased speed does not impair tracking solely by increasing close encounters. Rather, they support the view that speed affects MOT capacity by requiring more attentional resources to track at higher speeds
Formation of an ion-free crystalline carbon nitride and its reversible intercalation with ionic species and molecular water
The development of processes to tune the properties of materials is essential for the progression of nextgeneration technologies for catalysis, optoelectronics and sustainability including energy harvesting and
conversion. Layered carbon nitrides have also been identified as of significant interest within these fields
of application. However, most carbon nitride materials studied to date have poor crystallinity and
therefore their properties cannot be readily controlled or easily related to their molecular level or
nanoscale structures. Here we report a process for forming a range of crystalline layered carbon nitrides
with polytriazine imide (PTI) structures that can be interconverted by simple ion exchange processes,
permitting the tunability of their optoelectronic and chemical properties. Notable outcomes of our work
are (a) the creation of a crystalline, guest-ion-free PTI compound that (b) can be re-intercalated with
ions or molecules using “soft chemistry” approaches. This includes the intercalation of HCl,
demonstrating a new ambient pressure route to the layered PTI$xHCl material that was previously only
available by a high-pressure-high-temperature route (c). Our work also shows (d) that the intercalantfree (IF-) PTI material spontaneously absorbs up to 10 weight% H2O from the ambient atmosphere and
that this process is reversible, leading to potential applications for membranes and water capture in dry
environment
Chess databases as a research vehicle in psychology : modeling large data
The game of chess has often been used for psychological investigations, particularly in cognitive science. The clear-cut rules and well-defined environment of chess provide a model for investigations of basic cognitive processes, such as perception, memory, and problem solving, while the precise rating system for the measurement of skill has enabled investigations of individual differences and expertise-related effects. In the present study, we focus on another appealing feature of chess—namely, the large archive databases associated with the game. The German national chess database presented in this study represents a fruitful ground for the investigation of multiple longitudinal research questions, since it collects the data of over 130,000 players and spans over 25 years. The German chess database collects the data of all players, including hobby players, and all tournaments played. This results in a rich and complete collection of the skill, age, and activity of the whole population of chess players in Germany. The database therefore complements the commonly used expertise approach in cognitive science by opening up new possibilities for the investigation of multiple factors that underlie expertise and skill acquisition. Since large datasets are not common in psychology, their introduction also raises the question of optimal and efficient statistical analysis. We offer the database for download and illustrate how it can be used by providing concrete examples and a step-by-step tutorial using different statistical analyses on a range of topics, including skill development over the lifetime, birth cohort effects, effects of activity and inactivity on skill, and gender differences
Synthesis, Structure and Electronic Properties of Graphitic Carbon Nitride Films
Dark-colored shiny flakes of graphitic carbon nitride materials produced by reacting dicyandiamide C2N4H4 in a KBr/LiBr molten salt medium were determined to have a C/N ratio near 1.2:1. The compounds also contained 2.3-2.5 wt % H incorporated within N-H species identified by Fourier transform infrared spectroscopy. One recent study revealed analogous results for thin films produced by an similar synthesis method, while a previous investigation instead reported formation of crystalline gC3N4 flakes with a triazine-based graphitic carbon nitride (TGCN) structure. The structures of the materials produced here were studied using a combination of high resolution transmission electron microscopy, X-ray diffraction, IR and Raman and X-ray photoelectron spectroscopy, along with series of density functional theory (DFT) calculations carried out for a range of model layered structures. The results indicate the graphitic layered gCxNy materials contain a mixture of sp2-hybridized C-N and C-C bonded structures, with TGCN to graphene-like domains existing within the layers. Paramagnetic centers localized on the C3N3 rings revealed by electron paramagnetic resonance spectroscopy correspond to potential defect structures within the graphitic layers predicted by DFT calculations. Our results combined with those of previous researchers indicate that a range of graphitic carbon nitride materials could exist with different C/N/H ratios leading to tunable electronic properties for catalysis, semiconducting, spintronics and energy applications, that could be targeted by controlling the synthesis and thin film deposition procedures
A rocky planet transiting a nearby low-mass star
M-dwarf stars -- hydrogen-burning stars that are smaller than 60 per cent of
the size of the Sun -- are the most common class of star in our Galaxy and
outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M
dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf
planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per
star. The nearest such planets known to transit their star are 39 parsecs away,
too distant for detailed follow-up observations to measure the planetary masses
or to study their atmospheres. Here we report observations of GJ 1132b, a
planet with a size of 1.2 Earth radii that is transiting a small star 12
parsecs away. Our Doppler mass measurement of GJ 1132b yields a density
consistent with an Earth-like bulk composition, similar to the compositions of
the six known exoplanets with masses less than six times that of the Earth and
precisely measured densities. Receiving 19 times more stellar radiation than
the Earth, the planet is too hot to be habitable but is cool enough to support
a substantial atmosphere, one that has probably been considerably depleted of
hydrogen. Because the host star is nearby and only 21 per cent the radius of
the Sun, existing and upcoming telescopes will be able to observe the
composition and dynamics of the planetary atmosphere.Comment: Published in Nature on 12 November 2015, available at
http://dx.doi.org/10.1038/nature15762. This is the authors' version of the
manuscrip
Recommended from our members
The FIELDS Instrument Suite for Solar Probe Plus: Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients.
NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products
- …